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The unitary irreducible representations of SU(2, 2), the covering group of the conformal group, are 
reduced with respect to an iso-Poincare' subgroup £(3, 1). Explicit representations of the 15 generators 
of SU(2, 2) in terms of differential operators in the function space of 111, /;, E; S, t, m), 1m, 1;, E; r, t, m), 
and II;, E; t, m), the basis vectors for "iimelike," "spacelike," and "Iightlike" VIR's of £(3,1), respec
tively, are given. The matrix elements between a basis vector in the maximal compact subgroup SU(2) x 
SU(2) x U(1) and a basis vector in £(3, I) are calculated for all 14 different classes of VIR's of SU(2, 2). 
We find that two classes are reducibl!! with respect to "Iightlike" representations, two classes are 
reducible with respect to "timelike" representations, eight classes are reducible with respect to "spacelike" 
representations, and two classes contain both "timelike" and "spacelike" representations of £(3, I). 

1. INTRODUCTION 

The noncom pact group SU(2, 2), which is the cover
ing group of the c<:mformal group, or 0(4,2), has 
attracted some attention in recent years among 
particle physicists. There are vigorous attempts at the 
study of broken conformal and chiral symmetry,1 
hadronic electromagnetic form factors,2 and in the 
utilization of the conformal group in quantum 
electrodynamics caIculations.3 Our interest in this 
paper is a group theoretic and algebraic one, namely, 
the study of the unitary irreducible representations of 
SU(2, 2) and their reduction with respect to a sub
group £(3, I) which is isomorphic to the Poincare 
group. 

The more conventional and traditional approach 
to the reduction of a noncom pact group has been the 
study of its maximal compact subgroup, in which 
algebraic operations play the dominant role. The 
determination of the eigenvalues of the Casimir 
operators for the various unitary irreducible repre
sentations is usually most conveniently carried out 
in this framework. On the other hand, the reduction 
of a noncom pact group with respect to its noncompact 
subgroups has only recently been given some atten
tion.4 This study leads to coupled partial differential 
equations, and their solutions are the various special 
functions. The two approaches are quite different in 
their outlook and methodology, but they complement 
each other, making certain computations much easier 
or possible in one and not in the other method. 

Section 2 starts with the Lie algebra of the group in 
both its pseudo-unitary SU(2, 2) and pseudo-orthog
onal 0(4,2) notations. It then proceeds to the 
introduction of a noncompact subgroup ,which is 
isomorphic to the Poincare group. In the 0(4,2) 
language we select three spacelike coordinates I, 2, 5 
and one timelike coordinate 6 for special attention. 

(We do not use the ordinary space-time coordinates 
I, 2, 3, 0, in order to avoid confusion and eliminate 
prejudice. Of course, it is trivial to change from a 
I, 2, 5, 6 space to aI, 2, 3, ° space.) We then 
reduce this iso-Poincare subgroup £(3, I) with 
respect to its noncom pact subgroups £(3) and £(2), 
the Euclidean groups in three and two dimensions. 

Section 3 introduces basis vectors 1'1}, ~, E; S, t, m) 

of a unitary irreducible representation (UIR from 
now on) of £(3, I). Here, we deal with the "timelike" 
representations, and 'I} can be regarded as the "mass"; 
~, the magnitude of the "3-momentum"; E, the 
projection of "momentum" in the (1,2) plane; s, the 
"spin"; t, the "helicity"; and m is the component of 
"angular momentum" along the 5 direction. The 
quotation marks are used to denote all quantities in 
the I, 2, 5, 6 space. The generators ~ Jl and LJlV and 
the covariant spin operators WJl are represented as 
simple functions or differential operators In the 
function space 1'1}, ~, E; S, t, m). 

Section 4 discusses the representation of the 
remaining five generators of SU(2, 2). The dilatation 
operator L03 is easily represented, but the four 
conformal operators :RJl are much more complicated. 
They involve second-order differential operators in 
'I} , ~,and E with b.t = 0, ±I, and b.s = 0, ±l; the 
representations also involve three yet-to-be-determined 
functions I)(s), /3(s), and yes) which are related to the 
eigenvalues of the three Casimir operators C2 , C3 , 

and C4 of SU(2, 2). The explicit representations of 
;HJl and the determination of I)(s), pes), and yes) are 
some of the main results of the present article. 
The algebraic details are, however, relegated to 
Appendix C. 

Section 5 deals with the reduction of SU(2, 2) with 
respect to £(3, I) in the "spacelike" region. The 
results of Sec. 4 can be bodily carried over here by 
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the substitution of 'f} by iw and s(s + 1) by r(r - 1), 
where r may be complex. The change of the little group 
from SU(2) to SU(1, 1) makes Bargmann's classifica
tion of the VIR's of SU(1, 1) particularly relevant. 

Section 6 deals with the reduction of SU(2,2) 
with respect to E(3, I) in the "lightIike" region. The 
discrete "spin" case is similar to that of Sec. 4, only 
much simpler. The continuous "spi{!" case is studied 
and found to be not contributing to the UIR's of 
SU(2,2). 

Section 7 gives an exhaustive study of the matrix 
elements between a basis vector in the maximal 
compact subgroup SU(2) X SU(2) X U(l) and a 
basis vector in the iso-Poincare subgroup E(3, I), 
thereby joining the two different approaches mentioned 
in the introduction. All fourteen different classes of 
unitary irreducible representations are studied, and 
we find that two classes are reducible with respect to 
the "lightlike" representations of E(3, 1), two classes 
are reducible with respect to the "timelike" repre
sentations, eight classes are reducible with respect 
to the "spacelike" representations, and two classes 
contain both "timelike" and "spacelike" representa
tions of E(3, 1). The typical matrix elements 
involve, at worst, Whittaker's functions of the second 
kind and are given explicitly. The general matrix 
elements are obtainable by simple algebraic manipu
lations involving repeated differentiations of the 
typical matrix elements. 

Section 8 ends with a very brief summary of our 
results. Since this paper at times relies heavily on the 
notations used and results obtained in Papers I and II, 
the readers are advised to consult those papers for 
more details.' 

2. THE ISO-POINCARE SUBGROUP E(3, 1) 

The group SU(2, 2) and the reduction with respect 
to its maximal compact subgroup SU(2) x SU(2) X 

U(1) have been studied.' The language and notations 
used there are peculiar to unitary groups. The canoni
cal generators are A~, fl, Y = 1, 2, 3, 4, and the 
commutation relations are 

[A~, A~] = b~A~ - b~A~, c>:, (3, r, b = 1,2, 3, 4. 
(2.1) 

Since SU(2,2) is the covering group of 0(4, 2), just 
as SU(4) is the covering group of 0(6), we may also 
use the language and notations that are peculiar to 
orthogonal groups. The generators of 0(4,2) are 
L~, a, b = 0, 1,2,3,5,6; they are rotations or boosts 
in the a-b space. The canonical commutation relations 
are 

[Lab' Led] = i(gacLbd - gadLbc - gbcLad + gbdLaJ, 
a, b, c, d = 0, 1,2,3,5,6. (2.2) 

The metric is so chosen that gll = g22 = g33 = g,5 = 
-goo = -g66 = 1. In Appendix A the relationship 
between Lab' A~, and the 15 Dirac y-matrices are 
written down. For the purpose of reducing SU(2, 2) 
with respect to an iso-Poincare subgroup, the Lab 
are much more convenient to use. We single out the 
iso-Minkowski space 1, 2, 5, 6, and rewrite 

LaP == Lap, c>:, (3 = 1,2, 5, 6. (2.3) 

Next, we introduce 

!fa == Loa + L3a , 

:Ra == Loa - Laa· 

(2.4) 

(2.5) 

The remaining generator is L o3 , which we leave 
untouched. 

The generators of the iso-Poincare subgroup are 
Lap and !fa. The commutation relations are the 
familiar ones, and are obtained from Eq. (2.2): 

[!fa' !fp] = 0, 

[LI'V' !fa] = i(gfla!fy - gya!ffl)' (2.6) 

[LilY' LaP] = i(gl'aLyp - gl'pLYa - gYaLIlP + gypLfla)· 

The:R a transform like a 4-vector under LilY' 

[LilY' :Ra] = i(gfla:Ry - gya:Rfl)' (2.7) 

and commute among themselves, 

(2.8) 
However, 

UTa' :Rp] = -2i(Lap + g.pLo3). (2.9) 

Finally, we have the commutation relations between 

Loa and LaP' !f. , and :Ra , 

[Lo3 , LaP] = 0, 

[Loa, !fa] = -i!fa, 

[Lo3 , :R.] = i:Ra. 

(2.10) 

(2.11) 

(2.12) 

Reduction of the Iso-Poincare Group with 
Respect to Euclidean Subgroups 

1. The E(2) Subgroup 

We start with the Euclidean subgroup in two 
dimensions. The three generators are !f l' !f 2, and L12 • 

We introduce the following notation, 

and obtain 

:.I'± == :.1'1 ± i!f2, 

L5 == L12 , 

(2.13) 

(2.14) 

[!f+, :.1'_] = 0, (2.15) 

[L" !f ±] = ±!f ±. (2.16) 

The Casimir operator of E(2) is !f +L, which 
commutes with all three generators. Now let IE, m) be 
simultaneous eigenfunctions of !f +:.1'_ and L5; then 
IE, m> form a canonical basis which span a unitary 
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irreducible representation of £(2): 

~\:T_IE, m) = E2 IE, m), E2 ~ 0, (2.17) 

[5IE, m) = m IE, m), m = 0, ±L ±I,"', 
(2.18) 

:T±IE,m) = E IE,m ± I). (2.19) 

Si nce :T 1 and :T 2 are the "translation" operators and 
[5 is the rotation operator in the (1, 2) plane, E may be 
interpreted as the magnitude of "montentum" in the 
(I, 2) plane. 

2. The £(3) Subgroup 

Next, we deal with the Euclidean subgroup in three 
di mensions. The six generators are :T 1, :T 2, :T 5, [12, 

[25' and [51' The Casimir operators are 3'2 and I:: .3', 
where we have introduced 

[1 == [25' [2 == L51 , 3'2 = :n + :r~ + :f~ 
and 

c± == [1 ± iC2 , 1::. 3' = [1:J\ + [2:J'2 + [5:f5 (2.20) 

[3'2, :Ti ] = [3'2, C;] = [C. 3', :T;] = [C. 3', f:,] = 0, 
i = 1,2, 5. (2.21) 

Now let I~, E; t, m) be a canonical basis for £(3), 
with 

3'21~, e; t, m) = ~21~, e; t, m), ~2 ~ 0, (2.22) 

I:: • 3' I~, E; t, m) = t~ I~, e; t, m), 

t=O,±t.±I,···. (2.23) 

Here, we may interpret ~ as the magnitude of "3-
momentum" and t as "helicity." 3' and I:: are inter
preted as "momentum" and "angular momentum" 
operators, respectively. 

From Eqs. (2.17) and (2.22) we have 

:T51~, E; t, m) = (~2 - e2)} I~, e; t, m), (2.24) 

and from Eqs. (2.23) and (2.19) we have 

!E[+ I ~, E; t, m - 1) + ~ EC I ~, e; f, m + 1) 

= [t~ - m(e - (2)k] I~, e; t, /11). (2.25) 
Let 

[+ I~, E; f, m) = .!.(-fE- + c + t~ - mW - (2)!) 
e OE 

X I~, E; f, m + 1) (2.26) 
and 

L I~, E; t, /11) = !(f E- - c + t~ - m(e - (2)!) 
E OE 

x I~, E; t, m - 1), (2.27) 

wherejand c are functions of ~ and E but independent 
of t and m. Equations (2.26) and (2.27) are the most 
general expressions compatible with the commutation 

relations 
[[+, [_] = 2C5 , 

[[5' C±] = ±C±, 

(2.28) 

(2.29) 

and at the same time satisfy Eq. (2.25). From 
[C, :r;-] = ° we may determine j: 

Therefore, 

[+ I~, E; t, m) 

(2.30) 

= -(~ - E) - + - + t - - 111 - (~ - E )-
( 

2 2 1 0 c ~ 1 2 d) 
aE E E E 

X I~, e; t, m + 1), 
L I~, e; f, /11) 

= (~- - E) - - - + t - - m - (~ - E ) 
(

0 da c ~ 1 2 d) 
aE E E e 

X I~, E; t, m - 1). (2.31) 

In order to determine the function c, we consider 
unitary representations. Letj(~, E; t, m) == I~, e; f, m); 
then for unitary representations we have 

(j(t, E'; f', m + I), C~J(~, E; t, 111» 
= (Cj(t, e' ; f', m + I),f(~, e; f, m». (2.32) 

We normalize the states as follows: 

<~', E'; t', m' I ~,e; f, /11) 

= b(f2 - e)b(E '2 
- (

2)01'IO""",. (2.33) 

Substituting Eqs. (2.31) into Eq. (2.32) and using 
Eq. (2.33), we get 

[ _(~2 _ l)! :E + ~(c + (e ~ e2)t) }(E,2 _ e2) 

= [ce - e'2)~ a~' - ~(c' + (e ~ e
I2)t) }(eI2 

_ (2). 

(2.34) 

Upon integration with respect to e2 from ° to ~2, we 
finally have 

c = ~e2( e - (2)-! - (e - e2)~. (2.35) 

Eq uations (2.31) now become 

. ( 2 2 t 0 E( e - (2)-! 
L+ I~, e; f, m) = -c~ - e) - + -'-'----'--ae 2 

~ 1 0 d) + t- - (111 + l)-(~- - E-t 
E e 
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We have presented the derivation of Eqs. (2.36) in 
detail since in later discussions the same kind of 
approach will be used frequently and the operators 
involved will be of greater complexity. 

3. The E(3, 1) Subgroup 

Now we are ready to discuss the iso-Poincare sub
group, which we denote by E(3, 1). The ten generators 
are :1'" and L"p, 0(, {3 = 1, 2, 5, 6. The two Casimir 
operators are :1'1':1'" and WI' WI', where W" = 
1 (f'v(',,(J. 
7JEI'V,,(JoJ L. • 

[:f1':1'1', :1',,] = [:1'1':1'1', L,,(J] 

= [W"WI', :1',,] = [WI' WI', La(J] = 0. (2.37) 

Let I'I],~, E; S, t, m) be a canonical basis for 
E(3, 1), with 

:1'1':1'1'1'I],~, E; s, t, m) = -'I]21'1],~, E; s, t, m), (2.38) 

W"W" 1'1], ~,E; S, t, m) = 'l] 2s(s + 1) 1'1], ~,E; S, t, m), 

s = 0, t, 1, .. '. (2.39) 

Here, we may interpret 'I] as the "mass" and s as the 
"spin." For '1]2 > 0, we have "timelike" .. ~presenta
tions, for '1]2 = 0, "lightlike" representations, and, 
for '1]2 < 0, "spacelike" representations. These three 
different types of representations must be treated 
separately. 

3. "TIMELIKE" UNITARY IRREDUCIBLE 
REPRESENTATIONS OF £(3, 1), REDUCTION 

WITH RESPECT TO £(3) AND £(2) 

For "timelike" unitary irreducible representations 
of E(3, 1), we have 

:J',,~'I'I'I],~, E; s, t, m) = _'1]21'1], ~,E; S, t, m), (3.1) 

WI'WI' 1'1], ~,E; S, t, m) = 'l] 2s(s + 1) 1'1], ~,E; S, t, m), 

(3.2) 
where 

'1]2 > 0, e ~ E2 ~ 0, 

S = 0, t, 1, t, ... , t, m = 0, ±t ± 1, ... , 

:f± 1'1], ~,E; S, t, m) = E I'I],~, E; S, t, m ± 1), (3.3) 

:J~5 1'1], ~, E; S, t, m) = (e - E2)! 1'1], ~,E; S, t, m), (3.4) 

:1'61'1], ~,E; S, t, m) = (~2 + 'l]2)! I'I],~, E; S, t, m), (3.5) 

L5 1'1], ~,E; S, t, m) = m 1'1], ~,E; S, t, m), (3.6) 

L+ 1'1], ~,E; S, t, m) 

= (-(e _ E2)! ~ + E(~2 - E
2
)-! + t ~ 

OE 2 E 

- (m + 1)~(e - E2)!) I'I],~, E; S, t, m + 1), 

(3.7) 

C 1'1], ~, E; S, t, m) 

(
/:2 2)~ 0 E(e - E2)-} ~ 

- ~-E -- +t-
- OE 2 E 

- (m - 1); (e - E2l) 11],~, E; S, t, In - 1). 

(3.8) 
Our next task is to find irreducible representations 

for L16 , L26 , and L56 , the "boost" operators as differ
ential operators in the function space 1'1], ~, E; S, t, In). 
The procedure is exactly the same as that following 
Eq. (2.25), only much more complicated. The details are 
relegated to Appendix B. Here we present our results: 

L±6 == L16 ± iL26 , 

L+6 1'1], ~,E; S, t, m) 
o 0 (e + 2)-1 

= -iCe + 'l]2)!(-=- + _ + E 'I] 
~ o~ OE 2 

+ (In + I)! - t ~ (e - E2)!) 
E ~E 

x I'I],~, E; S, t, m + 1) 

i'l] 2 d 1 - 2 r [~ + (~ - E ) ][(s - t)(s + t + 1)] 

x I'I],~, E; S, t + 1, m + 1) 

i 'I] •• l I 
- - - [~ - (~- - E-) ][(s + t)(s - t + 1)] 

2 ~2 
x 1'1], ~,E; S, t - 1, m + 1), (3.9) 

C 6 11], ~,E; S, t, m) 
o 0 (e + 2r1 

= _i(~2 + r/)!(-=- + _ + E 'I] 
~ O~ aE 2 

- (m - 1)! + t 1 (e - E2)!) 
E ~E 

x 1'1], ~,E; S, t, m - 1) 

+ i!l [~ _ (~2 _ E2)l][(s _ t)(s + t + I)]! 2e 
x 1'I],~,E;s,t + l,m-1) 

+ i!L [~ + (~2 _ E2)!][(S + t)(s _ t + 1)]! 2e 
x 1'1], ~,E; S, t - 1, m - 1), (3.10) 

L56 1'1], ~,E; S, t, m) 

= -i(e + 'l]2lw - E2)!!~ 
~ o~ 

(e - E2)!a2 + 'l]2)-¥ (e + 'l]2)!(~2 _ E2)-!) 

+ 2 + 2 

x 1'7, ~,E; S, t, m) 

i EYJ ! + - -;; [(s - t)(s + t + 1)] 11],~, E; S, t + 1, m) 
2 ~ 

i E'Yj ! 
- - - [(s + t)(s - t + 1)] 1'Yj,~, E; S, t - 1, m). 2e 

(3.11) 
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Here 11},~, e; s, t, m) are basis vectors for a 
unitary irreducible representation of £(3, 1), and 

(j(1}', ~', e'; s', t', m), Los/('YJ, ;, e; s, t, m» 

= (L56j('YJ', ~', e'; s', f', m),j('YJ, ~, e; s, t, m». 

study of Loa is particularly simple. From Eqs. (2.10) 
and (2.11), 

(4.1) 

(4.2) 

(3.12) we have 

The basis vectors are normalized as follows: 

('YJ', ~', e'; s', t', m' I 'YJ, ~,e; s, t, m) 

= (j(1},2 - 'YJ2)(j(~'2 - e)b(e,2 - e2)(js's(jt't(jm'm' 

(3.13) 

From Eqs. (3.9)-(3.11) we see that !::.t = 0, ± 1 
and, for given s, t = -s, -s + 1," . , s. It can be 
checked explicitly that Eqs. (3.3)-(3.11) satisfy the 
commutation relations Eq. (2.6) in the function space 
11}, ;, e; s, t, m). 

For completeness we here record the representa
tions of WI': 

W+ I'YJ, ~,e; s, t, m) 

= -(e + 'YJ2)!(e/~)t I'YJ,~, e; s, t, m + 1) 

- !('YJ/~)[~ + (~2 - e2)!][(s - t)(s + t + I)]! 

X I'YJ, ~,e; s, t + 1, m + I) 

+ H'YJ/~)[~ - (e - e2)t][(s + t)(s - t + l)Jt 

X I'YJ, ~, e; s, t - 1, m + 1), (3.14) 

W-I1}, ~,e; s, t, m) 

= -(e + 'YJ2)!(e/~)t I'YJ, ~, e; s, t, m - 1) 

+ !('YJ/~)[~ - (~2 - e2)t][(s - t)(s + t + 1)]! 

X 1'YJ,~,E;.s,t + I,m -1) 

- H1}/~)[~ + a 2 - E2)t][(S + t)(s - t + 1)]t 

X 11},~, E; S, t - 1, m - I), (3.15) 

W5 1'YJ, ~,e; s, t, m) 

= _~la2 + 1}2)t(e - E2)tt I'YJ, ~,e; s, t, m) 

+ !(E'YJ/~)[(s - t)(s + t + 1)]! I'YJ, ~,E; S, t + 1, m) 

+ !(e'YJ/~)[(s + t)(s - t + I)]! I'YJ, ~, e; s, t - 1, m), 

(3.16) 

W6 1'YJ, .;, E; s, t, m) = -£.9' It], $, E; S, t, m) 

= -t'; 11},~, E; S, t, m). (3.17) 

where ei{Lo3 is a finite boost. Therefore, 

Hence, 

where 

(4.3) 

(4.4) 

(4.6) 

(4.7) 

(4.8) 

is the result of normalization equation (3.13). Equa
tion (4.7) leads directly to 

Loal1}, ~, e; s, t, m) 

= i('YJ i. + ~ i + e! + 3) 11},;, E; s, t, m). (4.9) 
a'YJ a; aE 

Next we tackle the very complicated problem of 
finding the representations for :R",. The procedure is 
again similar to that following Eq. (2.25); we let 

:Rs l1}, ~, e; s, t, m) 

x It], .;, E; s + k, t + 1, m), (4.10) 

with k = 0, ± 1 and I = 0, ± 1. It is our task to deter-
4. REDUCTION OF 8U(2,2) WITH RESPECT mine the 90 functions AkZ ' ••• ,dkZ(m), with each one 

TO E(3, 1) ("TIMELIKE" REGION) a function of 'l}, .;, E, and s, t, m. It is a formidable 
Besides the ten generators of £(3,1) we have the and tedious job, and in Appendix C we shall give an 

remaining five generators L03 and:R", of SU(2, 2). The outline of our method. Here, we shall present our 
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final results: 

:Ksl1],~, E; s, t, m) 

[ 

2 2 t ( 0
2 

0
2 

0
2 

1] a a) 2 2 -! -1 2 2 1 a = (~ - E) - - + - - - + 2 - - - + [1](~ - E) -1] (~ - E )2]_ 
~ ~ ~ E~~ ~ 

+ ~-1[4(e - E2)t + E2a 2 _ E2rt].E.. + [E(e _ e2r1 _ E-1(e _ e2)!].E.. 
O~ oe 

+ m2e-2(e - E2yi _ 2mt~e-2 + t2(~2 _ e2)!(fJ-2 + 2;-2 + e-2) _ s(s + 1)e-2(e _ e2)1 

- 2tfJ-2e-1(e - E2)t(~2 + 1]2)!{3(S) - He - E2)ta2 + fJ 2r 1 + ~(e - E2r!- + fJ- 2(e - e2 )kex(s)] 
X IfJ, E, e; s, t, m) 

+ [(s - t)(s + t + 1)] teE-l [ -e-1a2 + 1]2)!(:1] + fJ-l(t + 1) + 1](e: fJ2r) + fJ- l{3(S)] 

x 11], E,e; S, t + 1, m) 

+ [(s + t)(s - t + 1)]}e~-l[~-I(e + fJ2)!(:1] - fJ-l(t - 1) + fJ(e: fJ
2
)-) + fJ-1{3(S)] 

x 11],~, E; S, t - 1, m) 

+ [(s + t + 1)(s + t + 2)]}E~-lfJ-ly(S) IfJ, E, E; S + 1, t + 1, m) 

+ [(s + t + 1)(s - t + l)] t2f-lfJ-2(e - E2)!(e + fJ2)~y(S) 11], E, E; S + 1, t, m) 

- [(s - t + 1)(s - t + 2)]tEe-1fJ- l y(S) IfJ,~, E; S + 1, t - 1, m) 

- [(s - t - 1)(s - t)]!EE-IfJ-Iy(S - 1) IfJ, E, E; S - 1, t + 1, m) 

+ [(s + t)(s - t)]!2E-lfJ-2(~2 - E2)t(e + fJ2)!y(S - 1) IfJ, E, E; S - 1, t, m) 

+ [(s + t - 1)(s + t)]!ee-lfJ-Iy(s - 1) IfJ, E, E; s - 1, t - 1, m), (4.11) 

where exes), {3(s), and yes) are functions of s only and depend on the eigenvalues of the Casimir operators 
C2 , Ca , and C4 of SU(2, 2). 

The expressions for :R+, :JC, and :Its can be similarly written down: 

!R+_I1], ~,E; S, t, m) 

[ ( 
02 02 02 fJ a a ~ 0 a fJ a a) 

= e - OfJ2 + 0~2 + OE2 + 2 ~ 01] o~ + 2 : OE oE + 2 : OE ofJ 

1] ( E2 1 2 2 !) a + - 2( m + 1) - - - 2t - (E - E) -
E ~ ~ OfJ 

~( E2 1 . 2 2!) 0 a +- 2(m+l)+3--2t-(~ -E) -+(2m+7)-:-
E E2 ~ oE dE 

+ m2E-1 + 6me-1 + t2E(fJ-2 + 2;-2 - e-2) - s(s + I)EE-2 - tE~-1(E2 - E2r t 
- 4tE-Ie-1(e - E2)t - 2tEE-l'f/-2(e + 'f/2)t{3(s) + tE-1 + tee-Ice - E2r 1 

- iE(E2 + fJ2)-1 - -h(E2 
- e2

rl + EfJ-2ex(S)] IfJ, E, E; S, t, m + 1) 

+ [(s - t)(s + t + l)] tE-1 [E + (e - E2)!] 

[ (
0 (e + 2)-1) ] 

X ;-I(E2 + fJ2)! 01] + '1(\t + 1) + fJ 2 fJ - fJ-- 1{3(s) IfJ, E, E; S, t + 1, m + 1) 

+ [(s + t)(s - t + 1)]!E-1[E - (e - E2)!] 

X [E-l(~2 + 'f/2)!(:1] - fJ-\t - 1) + fJ(e : fJ2
r l) + 1J-1{3(S)] 11], E, e; s, t - 1, m + 1) 

- [(s + t + 1)(s + t + 2)]te-11]-1[E + (e - E2)!1Y(s) IfJ. E, E; S + 1, t + 1, m + 1) 

+ [(s + t + 1)(s - t + 1)]t2Ee-1fJ-2a2 + fJ 2)!y(s) IfJ, E, E; S + 1, t, m + I) 

- [(s - t + 1)(s - t + 2)]!¢-117-1[~ - (~2 - E2)!]y(S) IfJ,~, e; s + 1, t - 1, m + 1) 

+ [(s - t)(s - t - 1)]!E-1
[.:: + (e - E2)!]y(S - 1) IfJ, E, E; s - 1, t + 1, m + 1) 

+ [(s - t)(s + t)1*2EE-1fJ- 2a2 + fJ2)!y(S - 1) IfJ,~, E; s - 1, t, m + 1) 

+ [(s + t)(s + t - l)]!¢-l[; - (e - E2)t]y(S - 1) IfJ,~, E; S - 1, t - 1, m + 1), (4.12) 
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jl-Ir;,~, E; S, t, m) 

[ 

I a2 a2 a2 r; a a ~ a a 'YJ 0 0) 
= E( - or;2 + ae + OE2 + 2 ~ar; 0$ + 2: a-: o~ + 2: OE o'YJ 

'Y)( E2 I 2 2 !) 0 +- -2(m-l)--+2t-(~ -E) -
E 'YJ2" ~ O'Y) 

+- -2(m-l)+3-+2t-($ -E-) --(2m-7)-$ ( E2 1 2 9 !) a a 
E ;2 $ 0$ OE 

+ m2E-1 _ 6mE-1 + t2E('Y)-2 + 2$-2 - E-2) - s(s + I)E$-2 + tE$-l(e - E2rt 

+ 4t$-lE-1($2 - E2)! - 2tE$-1'Y)-2(e + 'YJ~i(J(s) + fE-1 + feE-lee - E2r l 

- tEee + r/r1 
- tE(e - E2r 1 + E'Y)-2!X(S)] i'Y),~, E; S, t, m - 1) 

- [(s - t)(s + t + 1)J!~-1[~ - (e - E2)!] 

X [~-1($2 + 'Y)2)!(:'Y) + 'Y)-l(t + 1) + 'Y)(e ~ 'YJ
2rl) - 'YJ-1(J(S)] I'YJ,;, 1£; s, t + 1, m - 1) 

- [(s + t)(s - t + 1)]!e-1[$ + (e - E2)!] 

x [~-\e + 'Y)2)!(:1) -1)-\t - 1) + 1)(~2 ~ 1)2rl) + 1)-l(J(S)] I'YJ,~, 1£; s, t - 1, m - 1) 

+ [(s + t + 1)(s + t + 2)]!-~-1'YJ-l[~ - (~2 - €2)!]y(S) 11), $, €; s + 1, t + 1, m - 1) 

+ [(s + t + l)(s - t + l)]!2€~-1'Y)-2(~2 + 1)2)ty(S) In, ~,E; S + 1, t, m - 1) 

+ [(s - t + 1)(s - t + 2)]ie-ln-l[~ + (e - E2)!-]y(S) In,;' E; s + 1, t - 1, m - 1) 

- [(s - t)(s - t - l)}!e-l1}-l[~ - (~2 - E2)!]y(S - 1) 11},;, E; s - 1, t + 1, m - 1) 

+ [(s - t)(s + t)]!-2Ee-I1)-2(e + 1)2)!y(S - 1) 11},~, E; S - 1, t, m - 1) 

- [(s + t)(s + t - 1)]!e-lr;-I[~ + (e - E2)!]y(S - 1) In,~, E; s - 1, t - 1, m - 1), (4.13) 

:Rsln, ;, E; s, t, m) 

= [-ce + 1)2)! (~ + ~ + ~ + 2 ~ ~ E-) - [1}( e + r/)-! + 1}-1( e + r;2)t] .E-
~ ~ ~ $~& ~ 

- ~-1[4(~2 + rl)! - 1}2($2 + n2r!].E... - [E(e + 1}2r! + E-I(e + 1}2Jk] E-
o~ OE 

+ m2E-2(e + n2)! _ 2mtE-2e-l(~2 + n2)t(~2 _ E2)!- + t2(;2 + r/)*(n-2 _ 2~-2 + E-2) 

+ s(s + 1)~-2(e + 1)2)! - 2t;n-2(J(s) + He + 1)2)t(;2 - €2r1 
- -tee + 1)2rt + 1)-2(e + rl)!a(s)] 

x /1), ~,E; S, t, m) 

+ [(s - t)(s + t + 1)]*~[ -e-1(e - E2)*(;E + (t + l)€-I _ E(e ~ €2r) + mE-I] 

X 11),~,E;s,t + I,m) 

+ [(s + t)(s - t + 1)]1~[e-l(~2 - E2)1(:E _ (t _ 1)1£-1 _ €(~2 ~ E2rl) + mE-I] 

X I'Y),~, E; S, t - 1, m) 

+ 2[(s + t + 1)(s - t + 1)J1~'Y)-2y(s) 11),~, 1£; S + 1, t, m) 

+ 2[(s - t)(s + t)]1~'Y)-2y(s - 1) I'Y),;, E; s - 1, t, m). (4.14) 

Equation (4.14) for :KG is relatively simpler since it is the sum of five states. Equations (4.11)-(4.13) all 
contain nine states where I:!..s = 0, ±l and I:!..t = 0, ±l. The reader is invited to check that Eqs. (4.11)-(4.14) 
satisfy the commutation relations (2.8) in the function space I'Y), ~, 1£; S, t, m), if 

(2s + 3)y2(S) - (2s - 1)y2(s - 1) = {J2(S) - !X(s). (4.15) 



                                                                                                                                    

322 TSU YAO 

We turn our attention next to the determination 
of the three functions !X(s), (3(s) , and yes). But, first, 
we have to consider the three Casimir operators CZ , 

Ca , and C4 of SU(2,2). For unitary irreducible 
representations of SU(2, 2), we have 

C2 1c2 , c3 , c4 ; 'Yj, ~,E"; S, t, m) 

= c21c2, c3 , c4 ; 'Yj, ~,E; s, t, m), (4.16) 

Ca ic2' c3 , c4 ; 'Yj, ~, E"; S, t, m) 

= c3 1c2 , c3 , c4 ; 'Yj, ~,E; S, t, m), (4.17) 

C4 ic2' c3 , c4 ; 'Yj, ~,E"; S, t, m) 

= c4 ic2' c3 , c4 ; 'Yj, ~,E; S, t, m), (4.IS) 

where c2 , c3 , and C4 are the eigenvalues of C2 , C3 , 

and C4 • 

A. The Casimir Operator C2 

The quadratic Casimir operator C2 has been defined 
in Ref. 5, and in the 0(4,2) and £(3,1) language can 
be written as 

C2 = !LabL
ab 

= !LIlP" + 4iLo3 - L~3 - [Jtll:Jll . (4.19) 

Substituting Eqs. (3.3)-(3.11), (4.9), and (4.1 1)
(4.14) into Eqs. (4.19) and (4.16), we get, after tre
mendous cancellation, 

[!X(s) + 2s(s + I) - 4] Ic2 , c3 , C4; 'Yj,~, E; S, t, m; 

= c2 ic2, c3 , C4; 'Yj,~, E; S, t, m) 
or 

!X(s) = C2 - 2s(s + I) + 4. (4.20) 

B. The Casimir Operator C a 

The cubic Casimir operator C3 can be written as 

C3 = --/"tJEabcdefLabLcaLff 

= -t(WIl:Jl
1l 
+ :JlIlWIl) + ~-EIlV7PLo3LIl\"L2P' (4.21) 

where E"abcdef is a totally antisymmetric rank-6 tensor. 
Again, substituting Eqs. (3.3)-(3.11), (4.9), and 
(4.11)-(4.14) into Eqs. (4.21) and (4.17), we get 

{3(s) = -c3 /s(s + 1). (4.22) 

C. The Casimir Operator C4 

The quartic Casimir operator C4 is particularly 
complicated: 

4C4 = LabLbCLcaLda - C: - SC2 

= :R1l:R1l:J,:J' + 4:RaLapLPY:Jy - 4:J{IlLIl,.:JV(Lo3 - 6i) 

+ !(LIlVLIlV)2 + T~( E"IlVOPLllvLap)2 

+ LIlP"(L~3 - SiLo3 - C2 - 22) 

- L~3 + 16iLg3 + 80Lga 

- 128iLo3 + 36C2 + 16iC2Lo3 - 2C2L~3' 

(4.23) 

We again substitute Eqs. (3.3)-(3.11), (4.9), and 
(4.11)-(4.14) into Eqs. (4.23) and (4.18), and get 

{c; - 4s(s + l)c2 - 4[c;/s(s + 1)] 

+ 4s\s + 1)2 - 85(S + 1) + 4c2 

- 4(s + 1)(25 + 3)y\s) - 45(25 - l)y2(s - I)} 

X Ic2 , Ca, C4 ; 'Yj,~, E; S, t, m) 

= 4c4 ic2' C3 , C4 ; 'Yj,~, E; S, t, m). (4.24) 

Substituting Egs. (4.20) and (4.22) into Eg. (4.15), 
we obtain 

y s) = - s + 2s - C2 - - + ----=---2( 1(2 15) a 
4 4 (25+1)(25+3) 

c2 
_ 3 ~2~ 

(2s + 1)(2s + 3)(5 + 1)2' . 

where a is a constant independent of s. Now, Eg. 
(4.24) is satisfied, provided that 

a = HC2 + ~-)(C2 + }) - c4 • (4.26) 

In passing, we remark that, in the process of obtaining 
Egs. (4.20), (4.22), and (4.25), several thousand 
terms appear at the beginning of the calculation. 
They involve functions of 'Yj, ~, E, S, t, and m and also 
differential operators up to fourth order in 'Yj, ~, and E. 

Most of them cancel and leave us only the results of 
Egs. (4.20), (4.22), and (4.24), which involve s only. 
This calculation, therefore, also serves as an inde
pendent check that Eqs. (4.1 1)-(4.14) are right and 
the arithmetic has been performed correctly. 

D. The Allowed Values of C2 , C3 , and C4 

The eigenvalues C2, C3' and C4 of the three Casimir 
operators can best be determined with the help of the 
maximal compact subgroup SU(2) x SU(2) x U(l) 
of SU(2, 2), which was studied earlier. 

From Eqs. (4.25)-(4.26), we have 

(25 + 1)(25 + 3)(s + 1)2y2(5) 

= (s + 1)6 - (c 2 + 5)(s + 1)4 

+ [t(c2 + 4)2 - C4](5 + 1)2 - cL (4.27) 

which we write as 

(2s + I )(2s + 3)(s + 1 )2y2(S) 

= [(s + 1)2 - A2][(S + 1)2 - B2][(S + 1)2 - C2]. 

(4.28) 

Comparing Eq. (4.28) with Eg. (4.27), we find the 
following parametrization: 

C2 = A2 + B2 + C2 - 5, (4.29) 

C3 = ABC, (4.30) 

C4 = HA2 + B2 + C2 - IJ2 
- [A2B2 + B2C2 + C2A2]. (4.31) 
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For degenerate unitary irreducible representations, 
c2 , c3 , and C4 depend on two parameters only, and, 
by comparing Eqs. (4.29)-(4.31) to Eqs. (1.9)-(1.11) 
of Paper II, we see that C is not independent, 

C = B + 1, (4.32) 

and that there are 14 types of degenerate unitary 
irreducible representations with allowed values for 
A and B given in Sec. 4 of that paper. [However, we 
caution the reader that not all 14 degenerate unitary 
irreducible representations of SU(2, 2) are reducible 
with respect to the "timelike" unitary irreducible 
representations of the iso-Poincare subgroup E(3, 1). 
Some of them are reducible with respect to the "space
like," others with respect to the "lightlike" VIR's 
of E(3, 1). This problem will be treated in Sec. 7.] 

For nondegenerate unitary irreducible representa
tions of SU{2, 2), the three parameters A, B, and C 
are linearly independent of each other. One example 
we have is from Paper I, which has a discussion_on the 
discrete series D±. (The existence of D± is the conse
quence of a general theorem due to Harish-Chandra.) 
If we consider the D- series, we have, from Eqs. 
(6.8)-(6.10) of Paper I, 

C2 = 2Jm{Jm + 1) + 2Km{Km + 1) + Am(Am + 4), 

(4.33) 

C3 = -(Am + 2){Jm - Km){Jm + Km + 1), (4.34) 

C4 = H(Am + 2)2 - 4Jm {Jm + 1)] 

X [(Am + 2)2 - 4Km{Km + 1)] - {Am + 2)2, 

(4.35) 

which, upon comparison with Eqs. (4.29)-(4.31), give 

A = ±(Am + 2) (+, K", > Jm; -,Jm > Km), 

(4.36) 

B = IJm - Kml, (4.37) 

C = Jm + Km + 1, (4.38) 

where Jm, Km = 0, t, 1, !, ... and Am = -Jm -
Km - Sm - 4, with S", = -1,0,1,2,3,··· [see Eq. 
(6.15) of Paper I]. If either J m or Km equals 0, Sm 
may also be -2, besides the allowed values -1, 0, 
1, 2, ... ; then we are dealing with the degenerate 
VIR's of the D- series, and C = B + 1. 

At this stage we wish to emphasize that, in general, 
it is not easy to determine the allowed values of A, B, 
and C to obtain unitary irreducible representations 
of SU(2, 2). The discussion we presented above is 
based completely on results from Papers I and II, 
where we studied the reduction SU(2, 2) ::> SU(2) x 
SU(2) x U(l). The only general remark we can make 

concerning Eq. (4.28) is that at least one of tne three 
parameters A, B, and C must be discrete, say A = So, 
So = 0, t, 1, !, ... ; then y2(SO - 1) = 0, and S = So 

is the smallest "spin." The other two parameters B 
and C may be discrete or continuous; in fact, they 
may even be complex, subject only to the condition 
that Eq. (4.28) is real and positive. 

5. REDUCTION OF SU(2, 2) WITH RESPECT 
TO £(3,1) ("SPACELIKE" REGION) 

For "spacelike" unitary irreducible representations 
of E(3, 1), we have 

:f,,:f" Iw, ~, €; r, t, m) = w2 lw, ~,€; r, t, m), (5.1) 

WI'WI' Iw, ~,€; r, t, m) 

= -oir(r - 1) IO),~, €; r, t, m), (5.2) 
where 

w2 > 0, e ~ ol, e ~ €2 ~ 0, 

t, m = 0, ±~-, ±1,··· 

Equations (5.1) and (5.2) are obtained from Eqs. 
(3.1) and (3.2) by replacing 'fJ by iw and s(s + 1) by 
r(r - 1). In contrast to the "timelike" region, where 
the little group of E(3, 1) is SU(2) ""' 0(3), in the 
"spacelike" region the little group of E(3, 1) is 
SU(I, 1) ,,",0(2, 1). The eigenvalues of the Casimir 
operator of the little group SU(2) are s(s + 1) with 
s = 0, t, 1,···; the eigenvalues of the Casimir 
operator of the little group SU(1, 1) are r(r - 1), 
which according to Bargmann can be divided into 
four types6 : 

(1) C~, the even continuous series, q = -r(r - 1) > 
0, m = ± integer, 

(2) cL the odd continuous series,q = -r(r - 1) > 
t, m = ± half-integer, 

(3) the D+ discrete series, r = t, 1, !, ... , m = r, 
r + 1,··· ,and 

(4) the D- discrete series, r = t, 1, !, ... , m = 
-r,-r-I,···. 

Expressions for "spacelike" unitary irreducible 
representations of E(3, 1) analogous to Eqs. 
(3.3)-:-(3.11) and Eqs. (4.11)-(4.14) can now be written 
down immediately by the replacement of 'fJ by iw and 
s by r - 1. Instead of Eqs. (4.20), (4.22), and (4.28), 
we have now 

(X(r) = C2 - 2r(r - 1) + 4, (5.3) 

(l(r) = -c3Ir(r - 1), (5.4) 

(2r - 1){2r + l)r2y2(r) = (r2 - A2)(r2 - B2)(r2 - C2). 

(5.5) 
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6. REDUCTION OF SU(2, 2) WITH RESPECT 
TO E(3, 1) ("LIGHTLIKE" REGIONS) 

The unitary irreducible representations of £(3, 1) 
which have zero "mass" are divided into two classes: 
(1) those with discrete "spin" and (2) those with 
continuous "spin." 

A. "Lightlike" Unitary Irreducible Representations 
of E(3, 1) with Discrete "Spin" 

The states here are labeled by ~, €, t, and m only: 

~,,~" I~, €; t, m) = 0, 

WIlW" I~, €; t, m) = 0, 

(6.1) 

(6.2) 

~± I~, €; t, m) = € I~, €; t, m ± 1), (6.3) 

~51~, €; t, m) = (~2 - €2)! I~, €; t, m), (6.4) 

~61~, €; t, m) = ~ I~, €; t, m), (6.5) 

L51~, €; t, m) = m I~, €; t, m), (6.6) 

L+ I~, €; t, m) 

= (_ (e - €2)! ~ + €( e - €2r! + t § 
O€ 2 € 

- (m + 1) ~(;2 - €2)!) I~, €; t,m + 1), (6.7) 

LI~,€;t,m) 

= ( e - €2)! ~ _ €( e - €2r! + t § 
O€ 2 € 

- (m - 1) ~ (;2 - €2)!) I~, €; t, m - 1), (6.8) 

L+61~, €; t, m) 

= - i (€ i + ~ ~ + ! ~ + (m + 1) §. 
o~ O€ 2 ~ € 

- t: (e - €2)!) I~, €; t, m + 1), (6.9) 

L61~, €; t, m) 

.( 0 0 1 € ~ 
=-1 €-+~-+---(m-l)-

o~ O€ 2 ~ € 

+ t! (e - €2)!) I~, €, t, m - 1), (6.10) 

(6.11) 

W± I~, €; t, m) == -t€ I~, €; t, m ± 1), (6.12) 

W51~, €; t, m) = _t(~2 - €2)! I~, €; t, m), (6.13) 

W61~, €; t, m) = -t~ I~, €; t, m). (6.14) 

Equations (6.1)-(6.14) are obtained directly from 
Eqs. (3.1)-(3.11) and (3.14)-(3.17) by setting 'YJ = O. 
From Eqs. (6.12)-(6.14) we see that W" behaves like 
- t~" when acting on I ~, €; t, m). The basis vectors are 
now normalized differently, 

(~', €'; t', m' I ~,€; t, m) 

= 15(~'2 _ ~2)15( €,2 - €2)I5t't!5 m'm' (6.15) 

with the result that 

and 

L031~, €; t, m) 

= i(~ ~ + € ~ + 2) I~, €; t, m). (6.17) 
o~ O€ 

Next, we find the representations for :Ra • The 
method is the same as in Appendix C, only much 
simpler this time: 

:R51~, €; t, m) = [(e - €2)!(;;2 - ::2) + [~l(e - €2)! + ~(e _ €2)-t] ;~ 

+ [E(e - €2r! - €-l(e - €2)!] ~ + (e - €2)![(t2 + m2)€-2 - g-2] - 2mt~€-2 
OE 

+ (e - €2)-!!5(t)] I~, €; t, m), (6.18) 

jt II: €' t m) = [E(~ + ~ + 2 £ ~~) + [€~-l + 2(m + l)~E-I - 2t€-I(e - E2)!] ~ 
+ \;, , , O~2 OE2 E OE o~ 0$ 

+ (2m + 5) ~ - t2E-I - tE-I[$(e - E2rt + $-1($2 - E2)t] + E-l(m2 + 4m + t) 
O€ 

+ teE-lee - E2r l - !€$-2 - €(e - €2)-I!5(t)] 1$, E; t, m + 1), (6.19) 
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:R It€" t m) = e - + - + 2 - - - + e~ - 2 m - 1 <;e + Ie (0; - e) -
[ ( 

(}2 (}2 ~ () ()) [t-1 ( ) t -1 2 -1· t2 2 i] () - ~, , , oe oe2 e oe 0; 0; 

_ (2m - 5) ~ - 12e-1 + le-1[;W - e2)-! + ;-\;2 - e2)~] + e-1(m2 - 4m + i) 
oe 

+ fee-lee - e2rl - !e;-2 - e(e - e2r\iJ(I)] I;, e; I, m - 1), (6.20) 

:R I; e' I m) = -; - + - + 2 - - - - - - - + - - + t - - 2mte- (; _ e)2 [ ( 
02 0

2 e 0 0) 4 0 (; e) 0 2 ; 2 2 2 I 

6 , , , oe oe2 ; a; Oe 0; e ; oe e2 

+ m2;e-2 + H(;2 - e2rl - i;-l - ;(e - e2r10(I)] I;, e; t, m), (6.21) 

where 0(/) is yet to be determined. 
It is interesting to note that in Eqs. (6.18)-(6.21) 

the "helicity" t is unchanged, 6.1 = 0, in contrast to 
Eqs. (4.11)-(4.14) where 6.1 = 0, ±l. Next, we apply 
Eqs. (4.19), (4.21), and (4.23) to the state I;, e; t, m), 
and find 

L± ,,;;, e; t, m) 

= (=f(e _ e2)t ?.- ± e(e - e
2rl + t£ 

(}e 2 e 

- (m ± 1) ~ (e - e2)t) IL ~, e; t, m ± 1), 

C2 = 3t 2 
- t - 20(t), 

C3 = t[o(t) - t2 - !J, 
(6.22a) L±6 ,,; ;, e; t, m) 

(6.30) 

(6.22b) (0 0 1 t 
= -i e - + ; - + -! ± (m ± 1) ~ 

C4 = -i{3t4 
- t 2 [1 + 40(/)] + 12[0(/) - I]}. 0; Oe 2; e 

(6.22c) 

Since C2 , C3 , and C4 depend on two parameters t 
and oCt) only, the unitary irreducible representations 
under study here are degenerate. When we compare 
Eqs. (6.22) with the results listed in Sec. IV of Paper 
II, we find that only Classes XI and XII (the excep
tional degenerate discrete series E±) are compatible, 
with t = 0, ±t, ±1,"', and oCt) = t. We note 
that Eqs. (6.22) now become 

C2 = 3(t 2 - 1), 

C3 = -t(t2 - 1), 

C4 = -!(t2 - 1)2 

(6.23a) 

(6.23b) 

(6.23c) 

and are also in the form of Eqs. (4.29)-(4.31) with 
A = - I ± I, B = ± t, and C = B + I. [See also 
Egs. (7.24).] 

B. "Lightlike" Unitary Irreducible Representations 
of £(3, 1) with Continuous "Spin" 

The states here are labeled by ~, ;, e, t, and m: 

~,,'J" I~; ;, e; t, m) = 0, (6.24) 

WIlW" I~;;, e; t, m) = ~21~; ;, e; t, m), (6.25) 

:f± I~; ;, e; t, m) = e I~; ;, e; t, m ± 1), (6.26) 

'J51~;;, e; t, m) = (e - e2)! I~;;, e, t, m), (6.27) 

:J~6 \(; ;, e; I, m) = ; ";;, e; t, m), (6.28) 

(6.29) 

=f 1~(e_e2)i) \S;;,e;t,m ± 1) 

=f li;-2[; ± (e - e2)ig IL ;, e; t + 1, m ± 1) 

=f ti;-2[; =f (e - e2)tg I~; ;, e; t - 1, m ± 1), 

L561~; ~, e; I, m) 

= i ( e - e2)t ~ + ! ! (e _ e2)i 
0; 2; 

;(e - e
2)-i) . + 2 1~;;,e;l,m) 

+ tie~-2~ ,,; ~, e; t + 1, m) 

- tie;-2~ ,,; ~, e; t - 1, m). 

(6.31 ) 

(6.32) 

Equations (6.24)-(6.32) are obtained from Eqs. (3.1)
(3.11) by taking the limit 'Y) = 0, but 'Y)2S(S + 1) = 
~2. Equations (3.14)-(3.17) now become 

W±I~;~,e;t,m) 

= -et Ie ~, e; t, m ± 1) 

=f H-1[; ± (;2 - e2)ig I~;;, e; t + 1, m ± 1) 

± H-1[; =f (;2 - e2)ig I~;;, e; t - 1, m ± 1), 

(6.33) 

W51~; ;, e; t, m) = _(;2 - e2)it It; ~, e; t, m) 

+ ie~-l~ It; ~, e; t + 1, m) 

+ ie~-lt It; ~, e; t - 1, m), 

(6.34) 

W 6 1t; ;, e; t, m) = -t; ,,; ;, e; t, m). (6.35) 
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From Eqs. (4.3)-(4.6), we again have 

(6.36) 
and 

L03 ,,; $, E; t, m) 

= j(~~ + $ :~ + E~ + 3) ,,; ~,E, t, m), (6.37) 

with the basis vectors normalized as follows: 

<r; ~', E'; t', m' I ~; ~,E; t, m) 

= o(r2 
- ~2)O(~'2 - e)O(E'2 - E2)Ot'tOm'm' (6.38) 

We next turn our attention to the representation 
for :Ita. Following the same procedure as in Appendix 
C, we write 

~.R51~; $, E; t, m) 

_ '(A 0
2 B 02 

C 0
2 + D £ £ E ~ ~ - f I a~2 + I ae + IOE2 I o~ 0$ + I a~ OE 

00 a a 0 ) + Fl ae ~ + a l a~ + bl a~ + cl ~ + dz(m) 

x I~;~, E; t + I, m) (6.39) 

and try to determine the A I' B l , etc. However, it 
becomes immediately obvious that we cannot find a 
set of the A I' B I , etc., which satisfy the commutation 
relations (2.7), (2.9), and (2.12). We conclude, there
fore, that, in the reduction of SU(2, 2) with respect to 
E(3, 1), the continuous "spin" representations of 
E(3, 1) do not contribute. 7 

C. Unitary Irreducible Representations of 
E(3, 1) with (f jL = 0 

When (f jL= 0, fl, = 1, 2, 5, 6, the little group is the 
iso-Lorentz group 0(3, 1). The states are now labeled 
by ko, c, s, and m: 

(fll(flllko, c; s, m) = 0, (6.40) 

WjLWJ.llko, c; S, m) = 0, (6.41) 

Llly!:IlY Iko, c; s, m) = 2(k~ + c2 
- 1) Iko, c; s, m), 

(6.42) 

EllvapLIl'l:aplko, c; s, m) = -8ikoc Iko, c; s, m), (6.43) 

1'" Iko, c; s, m) = 0, 

Cnlko, c; s, m) = m Iko, c; s, m), 

!:.± Iko, c; s, m) = [(s T m)(s ± m + 1)]! 

(6.44) 

(6.45) 

x Iko, c; s, m ± 1), (6.46) 

tS6lko, c; s, m) = [(s - m)(s + m)]! 

x C s I ko, c; s - 1, m) 
- mAslko, c; s, m) 
- [(s + m + 1)(s - m + 1)]! 
X CHI Iko, c; s + 1, m), (6.41) 

t:,:slko, c; s, m) = ±[(s T m)(s T m - l)]} 

xCslko,c;s 1,m±l) 

- [(s T m)(s ± 111 + I)]! 
x A, Iko, c; s, m ± 1) 

± [(s ± m + 1)(s ± m + 2)J! 

x C'+llko,c;s + I,m ± 1), 

(6.48) 

where tll.!:IlV and E"."ptllvtaP are the Casimir operators 
of the iso-Lorentz group 0(3, I), and8 

As = ikoc/s(s + 1), (6.49) 

Cs = U/S)[(S2 - k~)(S2 - c2)/(452 - 1)]!, (6.50) 

with either (I) c purely imaginary and ko half-integer 
or integer (the principal series) or (2) c a real number, 
o :S c :S I, and ko = 0 (the complementary series). 

However, when we next study the representations 
of Los, and :Ra , we find immediately that no repre
sentations exist for :Ra which satisfy the commutation 
relations (2.7), (2.9), and (2.12). We conclude, there
fore, that, in the reduction of SU(2, 2) with respect 
to E(3, 1), the null representation of E(3, I) also does 
not contribute. 

7. DETERMINATION OF MATRIX ELEMENTS 
OF SU(2,2) 

In Sees. 4-6 we have studied the reduction of 
SU(2,2) with respect to an iso-Poincare subgroup 
£(3, 1). The 15 generators of SU(2,2) have been 
expressed as differential operators in the Hilbert 
space spanned by the basis vectors 111, ~, E; S, t, m), 
Iw, ~, E; r, t, m), or I~, E; t, m). Our next task is to 
determine the allowed eigenvalues of the three 
Casimir operators C2 , Ca, and C~ and the matrix 
elements of SU(2, 2). In this connection, the maximal 
compact subgroup SU(2) x SU(2) x U(l) plays an 
important role. 

We recall briefly the notations used in Papers I 
and II. The basis vector is Ij, fl,; k, v; It), with 

J21j, fl,; k, v; It) = j(j + 1) Ij, p,; k, v; it), (7.1) 

Jalj, fl,; k, v; It) = fl, Ij, fl,; k, v; It), (1.2) 

K 2 1j, fl,; k, v; It) = k(k + 1) Ij, fl,; k, v; it), (1.3) 

Kalj, fl,; k, v; It) = v Ij, fl,; k, v; It), (1.4) 

Ro Ij, fl,; k, v; I.) = Ali, fl,; k, v; I.), (1.5) 

where J, K, and Ro are the generators of SU(2) x 
SU(2) x U(l). 
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A. The "LightIike" Representations of £(3, 1) 

We start with the simpler "Iightlike" representa
tions of £(3, I), treated in Sec. 6, since we know 
already that the exceptional degenerate discrete 
series £± of SU(2, 2), upon reduction with respect to 
£(3,1), contain "lightlike" representations only. 

1. VIR's in the £+ Series 

Consider one of the "ground states" of £+, 

\j = Po, fl = Po; k = 0, v = 0; I, = Po + 1), 

where Po = 0, t, 1, ... ; then, from Appendix A, we 
have 

Lf- \j = Po, fl = Po; k = 0, v = 0; Ie = Po + 1) 

= -i(1" - K~) Ipo,Po; 0, O;po + 1) = O. (7.6) 

Since we are considering unitary representations, the 
matrix element 

(Po,Po; 0, O;po + 11 c I~, e; t, Ill) = O. (7.7) 

Define 

f(~, e; t) == (Po,Po; 0, O;po + 1 I ~,e; t, 111 = Po); 

(7.8) 
then we have, using Eq. (6.8), 

( ~2 _ e2)l ~ _ e(e - e
2
)-! + t ~ _ Po! (e _ e2)~) 

de 2 e e 

X f(~, e; t) = 0, (7.9) 
which can be solved easily: 

1(;, e; t) = c(~, t)ePo-I(~2 - e2tl[~ + (~2 - e2)t]l, 

(7.10) 

with c(~, t) still to be determined. Next we consider 
the relation 

L35 = 1(::1\ - :J{s) = 13 - K3 , (7.11) 

which leads to 

(Po,Po; 0, O;po + II j{51~, e; t, m) 

= [(~2 _ e2)! - 2po] 

x(po,po;O,O;po+II~,e;t,m) (7.12) 

Equation (6.18) now gives us 

[ce - e2)!(~ - ~) 
de de2 

+ [~-l(e _ e2)~ + ~(~2 _ e2r~] ~ 
!5~ 

+ lEW - E2)-~ - E-lCe - e2)~1 ~ 
de 

+ (~2 _ e2)![t2e-2 + p~e-2 _ !~-2] 

- 2pot;e-2 + (e - e2rl!5(t) 

- (e - e2)! + 2Po]f(;, e; t) = 0, (7.13) 

which, upon substituting Eq. (7.10) in it, reduces to 

(e - e2)1 ~ + [21 + ;-lW - e2h.E.. 
d~2 d~ 

+ {e - e2r1[!5(t) - ~] - (e - e2
)} 

X [1 + 1;-2] + 1;-1 + 2Po) c(~, t) = 0. (7.14) 

Since c(~, 1) is independent of e, Eq. (7.14) reduces 
down to three separate eq uations: 

[!f + !!!... - (1 + ! !)JC(;, I) = 0 (7.15) 
de ; d~ 4 e ' 

(21 ;~ + t i + 2Po)C(;, I) = 0, (7.16) 

,)(/) = ';. (7.17) 

Equation (7.15) is easily solved, 

c(;,1) = c(t)e-';~-J, (7.J8) 

and Eq. (7.16) gives 

t = Po, 

which reduces Eq. (7.10) to 

f(~, e; Po) 

(7.19) 

= c(po)e-s~-1(e - e2rl[~ + (e - e2)1yo, (7.20) 

where c(Po) is a normalization constant. 
Next we consider the relation 

(7.21) 

which leads to 

(Po,Po; 0, O;po + II :K61~, e; t, 111) 

= [2(po + I) - ~](Po,Po; 0, O;po + II ;, e; t, 111). 

(7.22) 

Equation (6.22) now gives us 

[_~(~ + d
2 

+ 2': ~~) _ 4 ~ _ (f + .:)~ 
de de2 ~ d~ de d; e ; de 

+ t2;e-2 _ 2po/e-2(e _ e2)1 + p~~e-2 
+ };w - e2

)-1 - }~-l - ~ce - e2r l r5(t) 

+ ~ - 2(po + l)Jf(~, e; 1) = 0, (7.23) 

which is satisfied when we substitute Eqs. (7.17), 
(7.19), and (7.20) into it. The reason that we have to 
check with Eq. (7.23) is that both Ipo, Po; 0, 0; Po + 1) 
(in the £+ series) and Ipo, Po; 0, 0; -Po - 1) (in the 
E- series) lead to Eq. (7.20), but only the former 
also satisfies Eq. (7.23). 
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Equations (6.22) now become 

C2 = 3(p~ - 1), 

C3 = - Po(p~ - 1), 

(7.24a) 

(7.24b) 

C4 = -!(p~ - 1)2, (7.24c) 

which are identical to Eqs. (6.23). 
If, instead of Ij = Po, p = Po; k = 0, v = 0; 

A = Po + 1), we had chosen Ij = 0, p = 0; k = Po, 
v = Po; A = po + 1), which belongs to another unitary 
irreducible representation in the E+ series, we would 
have gotten again bet) = t, but t = -Po, with the 
result that 

g(~,E;t) 

== (0,0; Po, Po; Po + 11 ~,E; t, m = Po) 

= c(po)e-s~-!(e - E2)-1[~ - (e - E2)~yo (7.25) 

and 

C2 = 3(p~ - 1), 

C3 = Po(p~ - 1), 

C4 = -Hp~ - I? 
2. UIR's in the E- Series 

(7.26a) 

(7.26b) 

(7.26c) 

Next we consider the unitary irreducible repre
sentations in the E- series, which can be obtained 
from the E+ series by replacing A by -A. We recall 
that 

:r61~, E; t, m) = ~ I~, E; t, m), (6.5) 

where we have chosen the "energy" to be positive. 
We could equally well have chosen the "energy" 
negative, 

:r61~, E; t, m) = -~ 1;-, E; t, m), (7.27) 

with the result that we would have to replace ~ by 
-~ in Eqs. (6.7)-(6.22). We observe that Eqs. (7.9) 
and (7.13) are unchanged if we replace ~ by - ~ and 
t by -to Therefore, again 

f'(~, E; Po) 

== (Po, Po; 0, 0; -Po - 1 I ~,E; t, m = Po) 

= c'(po)e-s~-!(e - E2r![~ + (e - E2)!yo, (7.28) 

with 

and 

Similarly, 

g'(~, E; Po) 

t = -Po 

c2 = 3(p~ - 1), 

C3 = Po(p~ - 1), 

C4 = -!(p~ - 1)2. 

== (0,0; Po, Po; -Po - 11~, E; t, m = Po) 

(7.29) 

(7.30a) 

(7.30b) 

(7.30c) 

= c'(po)e-;;--!(e - E2ri[~ - (~2 - E2)l]Po, (7.31) 

with 

and 
t = Po 

c2 = 3(pg - 1), 

C3 = - Po(p~ - 1), 

C4 = -l(p~ - 1)2. 

(7.32) 

(7.33a) 

(7.33b) 

(7.33c) 

We have discussed the E± series in great detail, 
since they are the easiest. In the E+ series, A is always 
positive, and "energy" is positive; in the E- series, 
A is always negative, and "energy" is negative. We 
observe th<l.t Po = 0, t, 1 ,~, ... , but, for Po = 0, 
f(~, E;PO) = g(~, E;PO), and there is only one UIR 
in the E+ series. (The same remark holds for the E
series.) 

The "higher states" of a UIR in the E+ series can be 
obtained very easily (see Papers I and II), 

Ij = Po + t, p = po + t; k = t~ 
v = -t; A = Po + 2) 

= -i(2po + 1)-}P+ Ij = Po, P = po; 

k = 0, v = 0; A = Po + I), (7.34) 

and, with the repeated application of P +, Q+, S+ , and 
T+ together with Appendix A, we can calculate all 
matrix elements of the form (j, p; k, v; A I ~, E; t, m). 
The results are expressible in terms of derivatives of 
Eq. (7.20). 

B. The "Timelike" Representations of £(3, 1) 

We study next the more complicated "timelike" 
representations of E(3, 1) which were treated in Sec. 
4. Let us consider the discrete series D± of SU(2, 2). 
We have no a priori knowledge that we should make 
the reduction with respect to "timelike" representa
tions of E(3, 1) rather than "spacelike" representa
tions; only the result will tell that, indeed, "timelike" 
representations are the relevant choice. 

1. Discrete Series (the D+ Series), Class IV 

We now discuss the discrete series (the D+ series), 
class IV (Paper II) (see Theorem 4, Paper I). The 
three Casimir operators are [see Eqs. (6.8)-(6.10) of 
Paper 1] 

c2 = 2jmUrn + 1) + 2krn(km + 1) + Am(Am + 4), 

(4.33') 

( 4.34') 

C4 = H(Am + 2)2 - 4jmUm + 1)] 

x [(Am + 2)2 - 4km(km + 1») - (Am + 2)2, (4.35') 

wherejm' k m = 0, t, 1, i,'" and Am = jm + k m + 
Sm' Sm = 0, 1, 2, .... (See Theorem 3 of Paper I, 
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where we see that 8m = -1 is also allowed; further
more, if either jm or k m equals zero, 8 m = -2 is also 
allowed.) Consider one of the corner states (states of 
highest weight) of a VIR of D+ [see Eq. (1.6.11)], 
Ij=jm, p=jm; k=km' v=km; A=Am +4). 
This state has the special property that 

P-Ijm,jm; km' k m; Am + 4) 

= Q-Ijm,jm; km' k m; Am + 4) 

= 8_ljm,jm; km' k m; Am + 4) 

= L ljm,jm; km' km; Am + 4) = O. (7.35) 

We again have [analogous to Eqs. (7.7)-(7.10)] 

(jm,jm; k m, k m; Am + 41 C 11}, ~,E; s, t, m) = 0, 

(7.36) 

1(1}, ~, E; s, t) 

== (jm,jm; km' k m; A.m + 41 'f/,~, e;s, t,m = jm + k m), 

(7.37) 

and 

1(1}, ~, e; S, t) = C('f/, ~; s, t)e;m+km-t(~2 - e2)-! 

X [~ + a2 - e2)!]t. (7.38) 

Appendix A now provides us with eight useful 
relations, 

t«(f_ - :JL) = i(J_ + K_), (7.40) 

t«(fs - :R.5) = Ja - Ka, (7.41) 

l((fs + :R.s) = Ro , (7.42) 

f.+6 - M«(f + + :R.+) = 28+, (7.43) 

f._ 6 - !i«(f _ + :R._) = 2T+, (7.44) 

;[56 + H(fs + :R.5) = P+ + Q+, (7.45) 

- iLo3 + l((fs - :R.6) = P+ - Q+. (7.46) 

For unitary irreducible representations, Eqs. (7.35), 
together with Eq. (7.45), give us 

Equation (3.11) now takes Eq. (7.47b) into 

( ~2 + rl)!(~2 _ e2)! ! ~ 
~o~ 

+ He - e2)!(~2 + 'f/2)-! + t(~2 + 'f/2)!(~2 _ e2)-! 

+ (~2 _ e2)! - Um - km»)f('f/'~' e; s, t) 

- U(s - t)(s + t + 1)J! 

x e1}~-"i('f/,~, e; s, t + 1) 

+ U(s + t)(s - t + 1)]! 

x e'YJ~-"i('YJ, ~, e; s, t - 1) = 0, (7.47c) 

which upon using Eq. (7.38) becomes 

[ce _ e2)!(~2 + 2)!! ~ + (~2 + 'f/
2
r! + 1) 

'f/ ~ o~ 2 

+ tg-1a2 + 'f/2}! - Um - km)]C('f/'~; s, t) 
- U(s - t)(s + t + 1)]!t}g-2[~ + a2 

- e2iJ 
X C(t},~; s, t + 1) 

+ l[(s + t)(s - t + 1)]!7]~-2[~ _ (~2 _ E2)!] 

x C(t},~; s, t - 1) = O. (7.47d) 

Since C('f/, ~; s, t) is independent of e, Eq. (7.47d) 
breaks up into two equations, 

( ~2 + ",2)!!~ + (~2 + t}2r! + I)C( t. s t) ./ ~ o~ 2 7], Ii, , 

- U(s - t)(s + t + 1)]!'f/~-2C('f/' ~; s, t + 1) 

- l[(s + t)(s - t + 1)]t7]g-2C(t}, ~; S, t - 1) = 0 

(7.48) 
and 

[t~-1(~2 + 7]2)! - Um - km)]C(t}, ~; s, t) 

- UCs - t)(s + t + 1)l!'f/~-1C('YJ, ~; s, t + 1) 

+ H(s + t)(s - t + 1)J!'f/~-1C('YJ' ~; s, t - 1) = O. 

(7.49) 
Let 

C('f/,~; s, t) 

= exp [-(e + 'f/2)!](e + 'f/2)-th(t}, ~; s, t). (7.50) 

The sum and difference of Eqs. (7.48) and (7.49) 
x I'f/, ~, e; s, t, m = jm + k m) = 0, (7.47a) become 

which upon using Eq. (7.41) becomes 

(jm,jm; km' km; Am + 41 i[56 + (f5 - Um - km) 
X 11], ~, e; s, t, m = jm + km) = O. (7.47b) 

(~2 + 'f/2)! :~ + t~-l(e + 'f/2)! - Um - km») 

X h('f/,~;s,t) 

= [(s - t)(s + t + 1)J!1J~-lh(1J, ~; S, t + 1) (7.51) 
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and 

(¢2 + 1]2)t :~ - t~-l(e + 1]2)t + Um - km») 

x her;, ~; s, t) 

= [(s + t)(s - t + l)]~1];-lhC'l'], ~; s, t - 1). (7.52) 

These two coupled first-order partial differential 
equations can now be reduced to a second-order 
differential equation: 

(¢2 + '1']2) :;2 + ; :; + 2Um - km )t;-1(;2 + 1]2)~ 

- Um - k m)2 - t2 
- s(s + 1)1N-2

) 

X h(r;,~; s, t) = 0. (7.53) 

Next, we consider Eqs. (7.46) and (7.42): 

Um ,jm; km' km; Am + 4\ !en's - :Rs) - iLo3 

X \1], ;, E; S, t, m = jm + km) = 0, (7.54) 

(}m,}m; km, k m; Am + 41 n's - (Am + 4) - iLo3 

X 11], ;, E; S, t, m = jm + km) = 0, (7.55) 

which upon using Eq. (4.9) becomes 

( 'I'] i + ; ~ + E i + 3 + (e + 1]2)! - (Am + 4») 
0'1'] o~ OE 

X f('I'], ;, E; s, t) = ° (7.56) 
or 

(r; :'1'] + ; :~ + (jm + km) - (Am + 2») 
X hen, ;; s, t) = O. (7.57) 

Before solving for Eqs. (7.53) and (7.57), we remark 
that Eqs. (7.39), (7.40), (7.43), and (7.44) do not give 
us any new information; they again provide us with 
Eq. (7.53). The consideration of the Casimir operators 
now becomes important. We need to check only 
with C2 : 

(jm,jm;k m , k m; Am + 4\ C2\'I'], ;, E; S, t, m = jm + k m ) 

= cd(1], ;, E; S, t). (7.58) 

Vsing Eqs. (4.19), (3.3)-(3.1 I), and (4.9) together 
with Eqs. (7.39)-(7.46), we get,after some computa
tion, 

(ce + '1']2) :;2 + ; :~ + 2Um - km)t;-l(e + r/)t 

- t2 - s(s + 1)'1']2;-2 - C2 + 2(jm + km) 

+ Um + km)2 + AmO'm + 4»)h('I'],;; s, t) = 0, 

(7.59) 

which upon comparison with Eq. (7.53) gives 

C2 = 2jm(jm + 1) + 2km(km + 1) + Am(Am + 4), 

(7.60) 

which is the result we have in Eq. (4.33'). 
Let 

h('I'], ~; s, t) = ~-s[a2 + r/)! + ~Jim-kmg('I'], ~; S, t). 

(7.61 ) 

Equation (7.51) now becomes 

(e + 1]2)! ~ - (s - t);-1(;2 + 'l']2)!)g('I'],~; s, t) 

= [(s - t)(s + t + l)]!'I'];-lg('I'],~; S, t + 1), (7.62) 

which is solved immediately for t = s: 

g ('I'], ~; s, t = s) = G('I']; s). (7.63) 

Substituting Eqs. (7.61) and (7.63) into (7.57), we get 

('1']:1] +2j m -S-(Am +2»)G(r;;s)=0 (7.64) 

and 

(7.65) 

In Eq. (7.37), m = jm + km; therefore, s ~jm + k m . 
From Eqs. (4.28) and (4.38) we see that 

y (s = jm + km) = 0; 

hence, S = jm + km' and no other value of S is 
allowed. We have, finally, 

f(r;,~, e; s =jm + km, t = s) 
= C exp [_(~2 + 1]2)t](e + 1J2)-!1JUm+2Him-kml 

X ;-Um+kml[(e + rl}~' + Hm-k"'Ce - e2)-!-

X [~ + (e - e2)t]im+km. (7.66) 

The general case forf (1], ~, E; S = jm + km' t) with 
-s $ t $ S can be obtained by the repeated applica
tion of Eq. (7.52); the results, however, are omitted 
here. 

Next, we remark on the general matrix element 

(j, fl; k, v; A I 'YJ,~, e; S, t, m = fl + v). 

For the nondegenerate unitary irreducible repre
sentations in the D+ series, the general matrix 
element is difficult to compute due to the presence of 
the additional label ex in Ii, fl; k, v; A.; rx) (see Paper I). 
However, for degenerate VIR's, the general matrix 
element is easy to calculate with the help of Eqs. 
(II.1.7) and (11.1.8). (We remind the reader that 
degenerate VIR's in the D+ series have either im or km 
equal to zero.) 
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2. VIR's in the D- Series 

The treatment of the UIR's in the D- series is 
similar to that given above for the D+ series. The 
only difference is that the "energy" is now negative 
[compare with Eg. (7.27)]: 

~61'/'), ~, E; S, t, m) = _(~2 + 1)'i)} I'/'), ~, E; S, t, m). 

(7.67) 

Finally, we must answer the important question of 
why we have made the reduction of the discrete 
series D± of SU(2, 2) with respect to the "timelike" 
representations of £(3, 1). Indeed, instead of Eqs. 
(7.37)-(7.59), we could write 

JCw, ~,E; r, t) 

== Um,jm; km,km;Am + 41 (I),~,E;r,t,m =j", + km), 
(7.37') 

f(w, ~,E; r, t) 

= few, ~; r, t)Eim+km-tW - E2rl[~ + W - E2)~r, 

(7.38') 
C(w, ~,E; r, t) 

= exp [-(e - o}Y~]W - o}rlh(w,~; r, t), (7.50') 

(~2 _ (2)! ~ + t~-\e - (2)~ - Um - km») 

x h(w,~; r, t) 

= -let + r)(t - r + l)]}W~-lJi(W,~; r, t + 1), 

(7.51') 

(ce - O(2)! :~ - t~-\e - ( 2
)! + Um - km») 

which is solved immediately for t = r: 

g «(I), ~; r, t = r) = C(o); r). (7.63') 

Substituting Eqs. (7.61') and (7.63') into (7.57'), we 
get 

((I) a: + 2k m + r - (}'m + 2»)C(O); r) = 0 (7.64') 

and 

(7.65') 

We have, finally, 

/(w,~, E; r, t = 1') 

= e(r) exp [-(e - (2)!](e - o)2)-lw-r- 2km+(Am+2)e 

X [~ + (e - o})ir(im-km)(e - E2rl: 

x [~ + (e - E2)~Fm+l;m. (7.66') 

So far, the derivation for Eg. (7.66') parallels that 
for Eq. (7.66), and both have a claim to our attention. 
The important difference comes about when we 
consider the problem of convergence. Since 

is normalized, the integral 

LX) d'/')2 LX) de f 2

dE2If(1}, ~,E; s, tW 

must be finite, which requires {from Eq. (7.66)] that 

(J.", + 2) - Um - k m) + 1 > 0, (7.68) 
x hew, ~; r, t) 

= -let _ r)(t + I' _ l)]tw~-lh(OJ, ~; 1', t _ 1), a condition satisfied automatically since Am = 
jm + k", + sm' On the other hand, the integral 

(7.52') 
and 

( w ~ + ~ ~ + (j m + k m ) - (Am + 2») ow a~ 

x hew, ~; r, t) = 0, (7.57') 

which are the results obtained by reducing the D+ 
series with respect to the "spacelike" representations 
of £(3,1). Let 

hew, ~; r, t) = ~r[~ + a2 - (t)2)!]-Um._kmlg(w, ~; r, t). 

(7.61') 
Equation (7.52') becomes 

«e - ( 2
)! :~ + (I' - t)~lW - w2yk)g(W'~; r, t) 

= -ret - r)(t + r - l)]!-W~-lg(W, ~; r, t - 1), 

(7.62') 

is infinite since J( OJ, ~, E; r, t) is unbounded as 
w ........ ~, ~ ->- OJ. Therefore, the UIR's in the D± 
series are not reducible with respect to the "spacelike" 
representation of £(3, 1), and 

fer) = 0. (7.69) 

3. The Most Degenerate Principal Continuous Series 

We next come to the study of the most degenerate 
principal continuous series, class I (Paper II). The 
three Casimir operators are 

C2 = -4 - p2, 

C3 = 0, 

C4 = t p 4 + p2, 

(7.70a) 

(7.70b) 

(7.7Oc) 
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where p > 0. The allowed state of SU(2) X SU(2) X 

UP) obeys the restrictions of either (a) p + }. = 
± even integer or (b) p + }. = ± odd integer, with 
p = 0, 1,2, ... [see Egs. (1l.3.45) and (11.3.46)]. 

Let us start with one of the "ground" states 
\j = 0, f1 = 0; k = 0, v = 0; ;.), and define 

j(,/], ~, €; }.) 

== <j = 0, f1 = 0; k = 0, v = 0; All], ~,€; 
S = 0, t = 0, m = 0). (7.71) 

From Eqs. (4.28)-(4.31), we see that A = ip, B = 0, 
C = 1, and y2(S) = ° for s = O. Therefore, s = ° 
always for the series under consideration. 

From 

Substituting 

j(t), ;, €; A) = (~2 - €2)-lql], ~;}.) (7.74) 

into Egs. (7.72) and (7.73), we get 

[w + 'f}2)! (OZ + 0
2
.) 

0r]2 0;-

+ [t)( $2 + 'f}2rJ + 1]-\;2 + 1]2)~Jl. 
01] 

+ $-l[3(e + '/]2)} - 'f}2(e + t)2)-~1 :~ + iW + r/r} 

+ p2r;-
2W + 1]2)Z + 2}. - (e + 1]2)~JC(1], ~; }.) = ° 

(7.75) 

(7.42) and 

and Eg. (4.14), we get 

- (e + n2)~ + 2}. + /'f}-2(e + 'f}2)iJ 

X f('f},~, €; }.) = O. (7.72) 

From 

and Eq. (4.11), we get 

[ 
02 02 02 11 0 0) 

a2 
- €2)i ( - 01]2 + oe - 0€2 + 2 i or] o~ 
+ [nee - €2)-~ - n-1(e _ €2)t] ~ 

or] 

+ ~-l[4(e _ €2)~ + €2(~2 _ €2r!].i 
o~ 

+ [€(e - €2r~ - €-\e - e2)!] ~ oe 
_ He - €2)!(~2 + 'f}2)-1 + J}(e _ e2)-~ 

- p2T)-2(e - €2)! - (e - €2)!Jf(t), ;, €; i.) = 0. 

(7.73) 

( 
02 02 1 0 3 0 n 0 0 

- or/ + ae - ~ or] + ~ a~ + 2 ~ Or] o~ 
_ (e + r/)-1 _ / ~ _ 1)C(r],~; }.) = 0. (7.76) 

4 r]2 

The further substitution 

qt), ~; }.) = (~2 + rl)-lh(17, ~; }.) (7.77) 

reduces Eqs. (7.75) and (7.76) to 

( 
02 2 0 r] 0 0 1 2 2 _~) - + - - - 1 + - - - + F.( ~ + T) ) C 

oe ~ 0$ ~ or] 0$ 

X her], ;; ).) = 0, (7.78) 

( 
02 + ~ 1. + p21 _ ?l1. ..£ + J.( e + r]2)-k) 

01]2 T) Or] r]2; Or] o~ 

X h(T), ~; }.) = 0. (7.79) 

In order to make Eqs. (7.78) and (7.79) separable, 
we introduce the parabolic coordinates 

x = (~2 + /72)1 + ~, 
)' = (~2 + 'f}2)1 _ ~. 

Equations (7.78) and (7.79) now become 

[
X ( 0

2

2 
+ 1 ~ _ 1 + ! ~) ox x ox 4 4 x-

(7.80a) 

(7.80b) 

( 
02 1 a 1 1 p2) ] ' 

- y - + - - - - + - -:; hex, y; I.) = 0, 
0/ yay 4 4 y-

(7.81) 

x 2 
- + - - - - + - -[ ( 
02 2 a 1 I ;,) 

ox2 X ox 4 2 x 

( 
02 2 a I 1;' ] ' _ y2 _ + - -- _ - + - -) hex, y; I.) = 0, 
al yo)' 4 2 Y 

(7.82) 
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which are separable and antisymmetric in x and y. 
Since the differential equations are of the confluent 
hypergeometric kind in both variables, we try the 
ansatz9 

hex, y; .Ie) = 100 

dv e-t(x+vl co.11 V(coth tV)Ag(U, v), 

(7.83) 

where u = xy. Substituting Eq. (7.83) into Eq. (7.82), 
we find that 

g(u, v) = u-tC(u! sinh v). 

To determine G(u! sinh v), we substitute Eqs. (7.83) 
into Eq. (7.81) and find 

1 

( ) {
C2 sinh VKip(U~ sinh v) 

g U, v = i (7.84) 
C1 sinh V!ip(U sinh v) , 

where liz) and Kiz) are modified Bessel's functions 
of the first and second kind, respectively. The func
tion Iip(u! sinh v) can be shown to be unacceptable 
since it leads to anj('Y), ,;, e;.Ie) which is not normal
izable. The function KiP(U! sinh v) gives 

hex, Y; A) = c2100 dv e-!(x+lIlcO"hV(coth !v»). 

X sinh vK,)xii sinh v), (7.85) 

and is convergent for A ~ O. This integral can be 
performed, and we obtain 

hex, Y; A) 

= C(A, p)[2/(x - y)][W!d<ip+ll(x)W!d-(ip-l)(Y) 

- W!; . .!UP-ll(X)WiA,!(ip+I)(Y)]' (7.86) 

where WK./Z) is Whittaker's function of the second 
kind. Finally, we have 

f('Y), ,;, e; A) = C(A, p)(e - e2)-t(,;2 + 'Y)2rl 

x ,;-l[W!,l.!iiP+1l(X)Wh.iup_ll(Y) 

- Wh,!iip-ll(X)WhJup+1l(Y)], (7.87) 

where C(A, p) is a normalization constant.l° 

4. The Most Degenerate Complementary 
Continuous Series 

We next discuss the most degenerate complementary 
continuous series, class II (Paper II). 

The three Casimir operators are 

C2 = -4 + (12, 

Ca = 0, 
C4 = !(14 _ (12, 

(7.88a) 

(7.88b) 

(7.88c) 

where 0 ~ (] < 1. The allowed states of SU(2) x 
SU(2) x U(l) obey the restriction P + A = ± odd 
integer, with p = 0, 1,2, ... [see Eq. (U.3.51)]. 

Equations (7.88) are similar to Eqs. (7.70) and can 
be regarded as analytic continuations of the latter. 
Substituting ip ---+ a, we get immediately 

f('Y],';, E; A) = C(A, a)W - E2rl(e + 'Y]2r:l 

x ,;-l[WhJnHy)(X)Wkd<I-I1,(y) 

- Who tn-aleX) W~d(J+"l(Y»)' (7.89) 

However, in contrast to Eq. (7.87), where A can be 
either even or odd integers, here in Eg. (7.89) .Ie is 
restricted to odd integers.1o 

C. The "Spacelike" Representations of £(3, 1) 

We study next the "spacelike" representations of 
£(3, 1) which were treated in Sec. 5. There are five 
cases to be studied. 

1. Principal Series, Class XIII 

We start with the principal series, class XIII 
(Paper II). The three Casimir operators are 

C2 = p~ - 2p2 - %, 

C3 = ±pO(p2 + 1), 

C4 = 1p~ + p~(p2 - 1), 

(7.90a) 

(7.90b) 

(7.90c) 

where po = 0, t I, i,' .. , p > O. Comparing with 
Eqs. (4.29)-(4.31), we see that 

B = -t ± ip, 

C = B + 1 = t ± ip. 

(7.91a) 

(7.91b) 

(7.91c) 

The allowed states of the maximal compact subgroup 
SU(2) x SU(2) x U(l) obey the restriction P - A 2 
o and P + A 20, where p = j + k [see Eqs. (Il.3.14) 
and (1I.3.l5»). 

Let us specialize to Ca = PO(p2 + 1), A = -Po, and 
consider the corner state ij = Po, fl, = Po; k = 0, 
v = 0; A = Po) [see Eg. (lI.3.15)]. From 

H~5 - :1\,5) = 1a - Ka, (7.41) 

we have 

(j = po, ft = Po; k = 0, v = 0; A = Pol 

x :Hs - ~5 + 2po lro, ,;, E; r, t, m = Po) = O. 

(7.92) 

Next, we consider Eq. (4.28) with the appropriate 
change s + 1 ---+ r: 

(2r - 1)(2r + l)r2y2(r) 

= (r 2 - A2)(r2 - B2)(r 2 - C2), (7.93) 

where A, B, and C are given by Eqs. (7.91). In Sec. 5 
we learned from Bargmann that for r = t ± ip (the 
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odd continuous series ck and part of the even continuous series C:;) both y(r) and y(r - l) are auto
matically zero, and r is fixed for the principal series. 

Let 
<j = po, f.t = po; k = 0, l' = 0; J. = po I (I), ~,~; r = ~ ± ip. t, 11/ = Po> ;:/«(I),~,~; r, t). (7.94) 

Equation (7.92) with the help of Eq. (4.11) (we change 1) -,... iI'J, S + 1 -,. r) can now be written as 

X f(m, ~,~; r, t - 1) = o. 
Su bstituting 

f(w,~, €; r, t) = €J>o-t(e - ~2)-1[; + (e - €2)~]IC«(t), ~; r, t) 

into Eq. (7.95), we get two independent coupled differential equations: 

(~ + ~ + 2!!! 1...£ +!1.. + l.£ + t2(_W- 2 + U- 2) + (l + 1)~-2 
GO} G~2 ~ ow o~ wow ; o~ .t. 

_ p~(I)-2 _ 1 + 2potw-2;-I(e - (1)2)1 - He - (2)-I)C«(1),~, r, t) 

(7.95) 

(7.96) 

+ [(t + r)(t - r + l)]!~-l[_~l(e - ( 2)*(1.. + (O--l(t + I) _ (,)(~2 - nh-
1

) + PO(t)-I]C((t),;; r, t + 1) 
om 2 

_ [(t _ r)(t + r _ I)J1-;-I[;-1(;2 _ (2)!(~ _ w-1(t _ I) _ (t)(~2 - (
2
)-I) + POW-I] 

. OW 2 

X C{w, ;; r, t - 1) = 0, (7.97) 

Since -Po ~ t ~ Po in Eq. (7.94), we have 

/ (w, ~,~; r, t = po + 1) = f (w, ~,€; r, t = Po + 2) = 0, 

and Eqs. (7.97) or (7.98) become (setting t = Po + \) 

[;-l(e _ (2)!(o: _ Pow-1 _ W(~2 ~ (
2)-1) + POW-1Jc (w,,;; r, t = Po) = 0, (7.99) 
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which can be solved immediately: 

C (w, ;; r, t = po) 
= (;2 _ (2)-1[; + (;2 _ ( 2)t]Poh (;; r, t = Po). 

(7.100) 

Eliminating C(w, ;; r, t - 1) from Eqs. (7.97) and 
(7.98), setting t = po, and substituting Eq. (7.100) 
into the result, we get 

C~: + 2(2po + 1);-1 :; + ;-2[(2]10 + t)2 + l] 

+ 2Po~-1- l)h(~; r, t = Po) = 0. (7.101) 

Letting 

he;; r, t = Po) = ;-(2Po+1)g(~; r, t = Po), (7.102) 

S+ Ij = Po + s/2, fl = j; k = s12, v = k; A = po + s) 
= -(2po + s + I)~(s + I)ka1(po + s/2, s/2,po + s) 

x Ij = Po + (s + 1)/2, fl = j; k = (s + 1)/2, 

V=k;A=Po+S+l), (7.106c) 

T+ Ij = Po + s/2, fl = j; k = s/2, v = k; A = po + s) 

= a1(po + s/2, s/2, Po + s) 
x I.i = Po + (s + 1)/2, fl = Po + (s - 1)/2; 

k = (s + 1)/2, v = (s - 1)/2; 

). = Po + s + 1), (7.106d) 

where [Eq. (H.1.7a)] 

2( + s s +) (Po + s + })2 + p2 
a1 Po :2 ' 2 ' Po s = - (5 + 2)(2po + s + 2) , 

(7.107) 

we now reduce Eq. (7.101) to the standard form of a negative quantity [Eg. (1.6.4)]. The general matrix 
Whittaker's equation, element 

- + -1 + ..l!!!. + ~ g (~; r, t = Po) = 0, [ 
d2 ( 2 1 + 2)J 
de ; e 

(7.103) 
with the solution 

(7.104) 

Collecting all the factors together, we finally have 

I (w, ;,10; r, t = Po) 
= C(~2 _ 102)-1[; + (~2 _ €2)1]Po(;2 _ (1)2)-1 

x [; + (;2 - (2)!]Po~-(2Po+1) Wpo.iP(U). (7.105) 

The general I(w, ~, 10; r, t) can be easily obtained 
through the differential equations (7.97) and (7.98). 

So far we have only studied the corner state 
I.i = Po, fl = Po; k = 0, v = 0; A = Po> on the right 
boundary p = A. For an arbitrary stale 

Ij = Po + s/2, p = j; k = s/2, v = k; A = po + s), 

s = 0, 1, 2,'" , on the right boundary, we have 
the following four relations [Egs. (l.2.41)]: 

p+ Ij = Po + s/2, fl = j; k = s/2, v = k; A = Po + s) 

= (2po + s + l)ia1(po + s/2, s/2, p'o + s) 

x I.i = Po + (s + 1)/2, fl = j; k' = (s + 1)/2, 

v = (s - 1)/2; A = po + s + I), (7.106a) 

Q+ Ij = Po + s/2, fl = j; k = s/2, l' =i k; A = po + s) 

= -(s + l)!a1(PO + s/2, s/2, Po + $) 

x Ij = Po + (s + 1)/2, fl = Po + (s - 1)/2, 

k = (s + 1)/2, 'V = k; A = Po + s + I), 

(7.106b) 

<j = Po + s/2, fl = j; k = s/2, 'V = k, 

A = Po + s I (I), ~, 10; r, t, m = po + s) 

can now be obtained by the repeated use of Egs. 
(7.l06c), (7.39)-(7.46), and (7.105). The results, 
however, are omitted here. 

Similarly, matrix elements 

(j, fl; k, v; A I w, ;, E; r, t, m = fl + 1') 

in the interior of P - A ~ 0 and P + A ~ 0, P = 
j + k, can be obtained in a straightforward manner 
by using repeatedly Egs. (1.2.41), (fL\.7), (II.1.8), 
and (7.85). The mathematics involved is elementary 
but tedious; we need only do differentiations and solve 
algebraic equations. The results are again omitted. 

2. The Complementary Series, Class XIV 

The three Casimir operators are 

C2 = p~ + 2(a - 1)(a + 2), 

C3 = ±poa(a + 1), 

C4 = !pci - p~(a2 + a + 1), 

(7.108a) 

(7.108b) 

(7.108c) 

where Po = 0, 1, 2,' .. , -I < (f < O. Comparing 
with Egs. (4.29)-(4.31), we have 

A = ±po, 

B= a, 

C=B+I=a+l. 

(7.109a) 

(7.109b) 

(7.l09c) 

The allowed states of SU(2) x SU(2) x U(I) obey 
the restriction p - A ~ 0 and P + A ~ 0. Equations 
(7.108) are similar to Eqs. (7.91) and can be regarded 
as analytic continuations of the latter. In fact, from 
Sec. 5, we know that, for the even continuous 
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series cg of SU(I, I), q = -(r - W + ! > 0, m = 
± integer; hence, 

(r - W < t. 
Now, we have two possibilities: Either (r - ~)2 is 
negative and 

r = t ± ip 

with p real, or (r - t)2 is positive and 

O<r<1. 

(7.11 0) 

(7.111) 

The first possibility, Eq. (7.110), has already been 
included in our discussion of the principal series. 
[See the discussion after Eq. (7.93).] The second 
possibility, Eq. (7.111), is precisely what is needed 
for the complementary series of SU(2, 2) here, where 
po = 0, 1, 2, ... , are integers. 

If we define the matrix element 

(j = po, 11 = Po; k = 0, v = 0; it = Po I (I), ,;, €; 

r = (J + 1, t = po, m = Po) 

=/(OJ, ,;, €; r, t = Po), (7.112) 

we can find it immediately from Eq. (7.105) by 
substituting ip ---+- (J + t: 
f (OJ,';, €; r, t = Po) 

= C(e - (2)-1[,; + (e - (2)tryO(e - w2)-1 

X [,; + (e - OJ2)!Y°,;-<2P0+1)Wpo.t1+t(2';). (7.113) 

3. The Most Degenerate Discrete Series, 
P = Half-Integer, Classes V and VI 

The three Casimir operators are (for both Classes 
V and VI) 

C2 = p~ - t 
Ca = ±tpo, 

(7.114a) 

(7.1l4b) 

The special case with t = Po can be written down 
immediately from Eq. (7.105), with p = 0: 

f (0), ~,€; t = Po) 

= c(e - €2rl['; + (';2 - (2)JyO(e - w 2rJ 
X [,; + (e - Oi)!yo';-(2J'o+1)Wpo .o(2';), (7.116) 

where the Whittaker function of the second kind 
WJ'o.o(2~) can be expressed in terms of the Laguerre 
polynomials: 

Wpo ,o(2.;) = (_Wd(po - ~)! e-;(2.;)t Lpo_!(2';). 

(7.117) 

The general/ (OJ, .;, €; t ¥- Po) can again be 0 btained 
easily through Eqs. (7.97) and (7.98) by setting r = i. 
However, when t = ±t, c (w, ,;; r = L t = ±D are 
decoupled from each other. This interesting result is a 
direct reflection of the recurrence relation for 
Whittaker functions 

(2K - Z)WK.,,(Z) + WK+1.iz) 

= (11 - K + !)(11 + K - !)WK-1.Jl(z) (7.118) 

and agrees with the discussion in Sec. 5, where we 
remarked that for the subgroup SU(I, 1) its D+ series 
is inequivalent to its D- series. For r = -~ the VIR in 
the D+ series requires t = -L !, t, ... , while the VIR 
in the D- series requires t = -!, -I, -t, ... ; the 
two parts are completely decoupled. Therefore, 
knowing the solution / (w, ,;, €; t = Po) from Eqs. 
(7.116) and (7.117) does not give us any information 
about/(w,,;, €; t ~ -t). Tofindouttheproperties 
of the latter, we consider the function / (w, ,;, €; 
t = -Po), which can be obtained in the same way as 
Eq. (7.105): 

C4 = tp~ - !pL (7. 114c) f (w,,;, €; t = -Po) 

where Po = t, !, t, .... Equations (7.114) are the 
p = ° limits of Eqs. (7.90). But the p = 0 limit of the 
principal series (the half-integer po part) splits up into 
two inequivalent series of unitary irreducible repre
sentations. 

(a) Class V: The allowed states of the maximal 
compact subgroup SU(2) X SU(2) X U(I) obey the 
restriction p - it ~ 0 and p + it ~ Po + t [see Eqs. 
(11.3.16) and (11.3.18)]. We again specialize to Ca = 
tpo, and consider the right corner state 

Ij = Po, 11 = Po; k = 0, v = 0; it = Po)· 

Let 

U = Po, 11 = Po; k = 0, v = 0; it = Po I w, .;, €; 

r = t, t, m = Po) 

=/(w,,;, €; t). (7.115) 

= c'(e - (2)-1[,; - (e - (2)!yoW - w2)-1 

X [,; - (.;2 - W2Y!Y°,;-(2P0+1)W_po.o(2';). (7.119) 

To simplify the discussion and concentrate on the 
salient features of the problem, let us study the special 
case po = t;then t = ±t only. Equation (7.98) is now 
reduced to (remember r = t) 

(~ ~ + ~ + ~ 1 + 1) c (w ';' t = !) = 0 ,; ow A,; 2 ,; "2' 
(7. 120a) 

(~ ~ + ~ + ~ 1_ l)C (w ';' t = - !) = o. .; ow A,; 2 ,; " 2 

The solution for Eq. (7.20a) is 

c (w, ,;; t = t) 

(7.120b) 

= c(e - w2)-1[,; + W - w2)t]!,;-~e-;, (7.121a) 
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which agrees with Eqs. (7.116) and (7.117) as expected. 
However, the solution for Eq. (7.120b) is 

c(OJ,~; t = -!) 
= C'(;2 - OJ2ri[~ - (e - (jh~]~;-}e;, (7.121b) 

which diverges as ~ --+ 00. Equation (7.l21b) is 
compatible with Eq. (7.119) if instead of W_po.o(2~) 
we had M_

TJ 
o(2~), which is a Whittaker function of -o· 

the first kind and diverges at 00. Therefore, for 
proper behavior at infinity, we have to set 

/ (w, ~, E; t = -Po) = 0, (7.122) 

and the states Iw,;, E; r, t S -!, m = Po) do not 
exist. 

(b) Class VI: The allowed states of the maximal 
compact subgroup SU(2) X SU(2) X U(1) obey the 
restriction P + A ~ ° and P - A ~ po + t. [See Eqs. 
(II.3.17) and (11.3.19)]. We again specialize to 
C3 = !Po, and consider the left corner state 

Ij = 0, fl = 0; k = Po, v = Po; A = -Po)' 

Let 

(j = 0, fl = 0; k = po, v = Po; A = -Po I OJ,~, E; 

Equation (7.41) now gives us 

r = t, t, m = Po) 

= 1<w, ~, E; t). (7.123) 

(j = 0, fl = 0; k = Po, v = po; ). = -Pol 

X :lt5 - (1'5 - 2po Iw, ~, E; r = t, t, m = PO! = 0. 

(7.124) 

Following the same step5 as that ofEqs. (7.95)-(7.102) 
and remembering that Eq. (7.124) differs from Eq. 
(7.92) only in the sign of the last term, we get (for 

t = -Po) 

J(W,;,E;t= -Po) 

the following relations [Eqs. (1.2.43)]: 

P_lj = s/2, fl = j; k = Po + s/2, v = k; A = -po - s) 

= -(2po + s + 1)~bl(S/2,po + s/2, -Po - s) 

X Ij = (s + 1)/2, fl = (s - 1)/2; 

k = Po + (s + 1)/2, v = k; 

A = -Po - s - 1) (7.127) 

etc., where [Eq. (U.1.8a)] 

b2 (S s ) (Po+S+!)2 
1 2' Po + 2' -Po - s = - (s + 2)(2po + s + 2) . 

(7.128) 

4. The Most Degenerate Discrete Series, 
P = Integer, Classes VII-IX 

The three Casimir operators are (for all three 
classes VII-IX) 

C2 = pg - 4, 

C3 = 0, 

C4 = !p~ - p~, 

(7.129a) 

(7. 129b) 

(7.129c) 

where Po = 1, 2, 3,' ... Equations (7.129) are the 
a = ° limits of Eqs. (7.108), but the a = ° limit of 
the complementary series (the Po = 1, 2, 3, ... part) 
splits up into three inequivalent series of unitary 
irred ucible representations. 

(a) Class VII: The allowed states of the subgroup 
SU(2) X SU(2) X U(I)obeytherestrictionp - A ~ ° 
and P + A ~ Po + 1 [see Eqs. (II.3.21) and (11.3.23)]. 
We again consider the right corner state Ij = Po, 
fl = Po, k = 0, v = 0; t. = Po). Let 

<J = Po, fl = Po; k = 0, v = O;}. = Po I OJ,~, E; 

r = 1, t, m = Po) 

=/«(I),~, E; t). (7.130) 

The special case with t = po again can be written 
down immediately from Eq. (7.113) with a = 0: 

= t(e - E2rl[~ - (e - E2)}yO(e - ol)-l 
X [~ _ (e _ OJ2)~yo~-(2"o-+-l)Wpo.o(2~). (7.125) f (OJ, ~,E; t = Po) 

= cW - e2r-l[; + (;2 _ E2)~yO(e _ (1)2)-1 

Si milady, we find that 

J(w, ;, E; t = Po) = 0, (7.126) 

and the states Iw, ;, E; r = !, t ~ t, m = Po) do not 
exist. 

For an arbitrary state 

Ij = s/2, fl = j; k = Po + s/2, v = k; t. = -Po - s), 

s = 0, 1, 2, ... , on the left boundary, we may use 

X [; + (e - ('J2)}r)O;-(2Po+L)~V;)oJ(2n (7.131) 

The general/ «(I), ;, E; t ¥- Po) can again be obtained 
through Egs. (7.97) and (7.98) by setting r = 1. 
However, we notice that, when t = 0, ± 1, c (OJ, ;; 
r = 1, t = 0, ± 1) are decoupled from each other. 
An analysis similar to that of Eqs. (7.119)-(7.121) 
demonstrates that the states I ('J, ~, E; r = 1, t S 0, 
m = Po) do not exist. This observation is but a 
reflection of the fact that here we are using a VIR in 
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the D+ series of SU(l, 1) with r = 1, and only t = r, 
r + 1, r + 2, ... are allowed (see Sec. 5). 

(b) Class VIII: The allowed states of SU(2) x 
SU(2) x U(1) obey the restriction P + A 2 0, P -
A 2 po + 1 [see Eqs. (II.3.22) and (lI.3.24)]. We now 
consider the left corner state Ij = 0, '" = 0; k = Po, 
v = po; A = -Po), Following the same procedure 
as in Eqs. (7.124) and (7.125), we now get 

l(w,~,E;t= -Po) 

= c(e - E2rl[~ - (e - E2)t]POW - w2r 1 

X [~ - (e - (2)!yo~-(2Po+1)WpoJ(U), (7.132) 

and the states Iw,~, E; r = 1, t 20, m = Po) do not 
exist. Here, we are using a VIR in the D- series of 
SU(I, 1) with r = 1, and only t = -r, -(r + 1),'" 
are allowed. 

(c) Class IX: The allowed states of SU(2) x 
SU(2) x U(1) obey the restriction P - A 2 Po and 
P + A 2 Po [see Eq. (11.3.25)]. We now consider the 
"ground" state 

Ij = Po/2, '" = Po/2; k = Po/2, v = Po/2; A = 0). 

Let 

(j = Po/2, '" = Po/2; k = Po/2, v = Po/2; 

A = ° I w, ~, E, r = 1, t = 0, m = Po) 

= few, ~, E). (7.133) 

Equation (7.41) now gives 

(j = Po/2, '" = Po/2; k = Po/2, v = Po/2; A = 01 
X :Rs - ~5 Iw, ~, E; r = 1, t = 0, m = Po) = 0, 

(7.134) 
and Eq. (7.97) leads to 

( 
a2 a2 w a a 1 a 3 a 2 1 

ow2 + ae + 2 ~ Ow o~ + ~ ow + ~ a~ - Po w2 

(e - (2)-1) 
- 1 - 4 c(w, ~) = 0, (7.135) 

which can be solved easily: 

c(w, ~) = C(~2 - (2)-lwpo~-(po+!)K"o+lm. (7.136) 

Therefore, 

few, ~,E) 

= CEPO(e - E2rlwpo(~2 - w2rl~-(Po+l)K"o+1(~)' 

(7.137) 

where KPo+l(~) is the modified Bessel's function of the 
second kind. It can be shown thatf (w, ~,E; t "" 0) = ° 
and the states Iw,~, E; r = 1, t"F- 0, m = Po) do not 
exist. Here, the VIR of SU(l, 1) involved is the 

trivial I-dimensional unitary irreducible representa
tion. 

5. The Most Degenerate Discrete Representation, 
Po = 0, Class X 

This is an isolated representation; the three Casimir 
operators are 

C2 = -4, 

C3 = 0, 

C4 = 0. 

(7.13Sa) 

(7.13Sb) 

(7. 13Sc) 

This representation is the (] = ° limit of the com
plementary series with po = 0. The allowed states of 
SU(2) X SU(2) X U(I) obey the restrictionp - A 2 ° 
and p + A 2 ° [see Eq. (11.3.20)]. The "ground state" 
is Ij = 0, '" = 0; k = 0, v = 0; A = 0). The transfor
mation function 

few, ~, E) = (j = 0, '" = 0; k ::;= 0, v = 0; 

A = ° I w, ~,E; r = 1, t = 0, m = 0) 

(7.139) 

is a special case of Eq. (7.133) with Po = 0, and the 
solution is 

few, ~,E) = c(e - E
2)-!(e - w2rl~-lK!(~) 

= c'(e - E
2r 1(e - w2ri~-le-~. (7.140) 

8. CONCLUSION AND SUMMARY 

We have come to the end of our study of the 
reduction of SU(2, 2) with respect to the iso-Poincare 
subgroup £(3, 1). The major calculations completed 
here are the construction of the representations of :Rp , 
the conformal operators, in Eqs. (4.11)-(4.14) and 
(6.1S)-(6.21), and the eigenvalues of the three Casimir 
operators, Eqs. (4.19)-(4.24). These calculations were 
followed in Sec. 7 by the computation of the matrix 
elements between a state classified by the maximal 
compact subgroup SU(2) X SU(2) x U(1), Ij, "'; 
k, v; A) and a state classified by £(3,1), 11J,~, E; 
s, t, m), Iw,~, e; r, t, m), or I~, E; t, m). We found 
that the fourteen classes of unitary irreducible repre
sentations of SU(2, 2) are divided into four distinct 
groups: (1) Two classes are reducible with respect to 
the "lightlike" VIR's of £(3, I) only; (2) two classes 
are reducible with respect to the "timelike" VIR's 
of E(3, 1) only; (3) eight classes are reducible with 
respect to the "spacelike" VIR's of £(3, 1) only; 
(4) two classes contain both "timelike" and "space
like" VIR's of £(3.1). Once the matrix elements 
involving the "ground" states or states of highest 
weights have been calculated, the general matrix 
elements can be obtained directly by simple algebra 
and repeated differentiations. 
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APPENDIX A: RELATION BETWEEN L(/~ 
AND A~ 

The canonical generators A~ of SUe 4) satisfy the 
commutation relations (2, I). The generators of the 
maximal compact subgroup SU(2) x SU(2) x U(I) 
of SU(2, 2) are written as 

J+ = Ai, J_ = A~, Ja = HA~ - A~), (AI) 

K+ = A~, K_ = A~, K3 = HA~ - A!), (A2) 

Ro = HA~ + A~ - A~ - A!). (A3) 

The remaining eight generators are 

P+ = iAL P_ = iA;, (A4) 

Q+ = iA~, Q_ = iA!, (A5) 

S+ = iA~, S_ = iA!, (A6) 

T+=iA~, L = iA;. (A 7) 

The relation between LIl~' the canonical generators 
of 0(4,2), and the generators of SU(2,2) can be 
written down as follows: 

where 

J± = H(L23 + L15 ) ± i(L3I + L25)]' (A8) 

J 3 = HL12 + L35)' (A9) 

K± = H(L23 - L 15 ) ± (L3I - L2f»]' (AlO) 

Ka = l(L12 - L 35), 

Ro = L06 ' 

P ± = HCL56 + Loa) ± i(Lo5 + La6)]' 

Q± = H(L 56 - Loa) ± i(Lo5 - L3G)]' 

S± = HLo± ± iL±6)' 

Tt = l(LOT ± iL; 6)' 

(A 11) 

(AI2) 

(A 13) 

(AI4) 

(A 15) 

(AI6) 

L±6 = LI6 ± iL26 and Lo± = LOI ± iLo2 ' 

Next, we study the relation between the 15 Dirac Y 
matrices and Lab' We have immediately 

(AI7) 

(AI8) 

with gu = g~2 = g33 = -goo = I. The factor in Eqs. 
(AI7)-(A20) is included so that in the 4-dimensional 
representation the "transform like" sign ,....., becomes 
an equality sign. For completeness we write down 
the explicit representation for the Dirac matrices, 

y=(O 
-0 

~), Yo = (~ -~), 
(ak 

r1i; = €ijk ° ~J, ,(0 ak ) aOk = I , 

ak ° 
iysY = (~ ~o), iysyo = (_ ~ ~), 

,(0 
Ys = I 1 ~), (A24) 

where i,j = 1,2,3 and 0 are the Pauli matrices. We 
notice that Yo, aii , and iysY are Hermitian, while y, 
aOk , iysyo, and Ys are anti-Hermitian. This choice is 
made because the Hermitian matrices are linear 
combinations of J, K, and Ro only, involving genera
tors of the maximal compact subgroup, while the 
anti-Hermitian matrices are linear combinations of 
p ±' Q±, S±, and T± only, involving the noncom pact 
generators of SU(2, 2). 

APPENDIX B: DERIVATION FOR L!6 AND L;;6 

We start with the representation for [S6' The most 
general expression is 

[5611'),;, €; s, t, m) = -i i (g" ~ + hi, ~ +J~,(m») 
,,~-t 0; O€ 

X IrJ,~,€;s,t+Il,m), (81) 

where n = -I, 0, 1 and g", hn , and!:, are functions 
of 1'), ;, and €. From 

(82) 
we get 

(83) 

andIn is independent of m, with 

(84) 

(A 19) Next, we consider the commutation relation 

Y5 ,..... 2L56 , (A20) 

where fl, v = 0, 1, 2, 3 and ,..... means "transforms 
like." Our y matrices are so chosen that 

{Yll' Yv} = -2gll V' (A2l) 

(85) 
which leads to 

(86) 
and 

(87) 

allv = !i[YIl' yv], (An) The commutation relation [~6' [56] = -i:J's IS now 
(A23) automatically satisfied. 
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We can now rewrite Eq. (Bl) as follows: 

L56 11'], ;,.:; s, t, m) 

= -i (;-\e + 1']2)t(e - .:2)t :; + fo) 

x 11'], ;,.:; s, t, m) 

- if+ 11'], ;,.:; s, t + 1, m) 

- !f-I1'],;,':; s, t - 1, m), (B8) 

where the three functions/n , n = -1,0,1, are yet to 
be determined. Next, we consider 

We rewrite Eqs. (B8) and (BIO) as follows: 

L56 11'], ;,.:; s, t, m) 

= -i(e + 1']2)t(e _ .:2)!;-1 :; 

(e + 1']2rt(e - .:2)! (e + 1']2)tW - .:2rt) + +~~~~-""""'----
2 2 

x 11'], ;,.:; s, t, m) 

+ i.:d(t + 1) 11'], ;,.:; s, t + 1, m) 

- id(t) 11'], ;,.:; s, t - 1, m), (BI7) 

(B9) C±611'],;,':; s, t, m) 

and obtain 

L+6 11'], ;,.:; s, t, m) 

From 

we get 

= -i[(e + 1']2)!(~~ + ~ + (m + 1).:-1 ; a; a.: 
+ .:(e ~ .:2)-1 _ t;-l.:-\e _ .:2)!) 

- (e - .:2)! .?- fo] 11'], ;,.:; s, t, m + 1) 
a.: 

+ i (;2 - .:2)! t + ;.:-1) 

x f+ 11'], ;,.:; s, t + 1, m + 1) 

+ i(;2 _ .:2)! ~ _ ;.:-1) 

x f-I1'],;,':; s, t - 1, m + 1). (BI0) 

(Bl1) 

( /:2 2) ~ f, /:2 -1 .?- f, " -.: a.:2 0 - ".: a.: 0 

_ .:2(;2 + 1']2)!(e - .:2r~ = 0 (B12) 

and 
(BI3) 

where the functions d± are independent of .:. Now, 
we restrict ourselves to unitary irreducible repre
sentations, and 

(f(1']', ;', .:'; s, t, m), L5s/(1'], ;,.:; s, t, m» 
= (L5s/(1']', ;', .:'; s, t, m),f(1'], ;,.:; s, t, m», 

(BI4) 

which upon using (B8) leads to 

fo = H;2 + 1']2)-!(;2 - .:2)t + H;2 + 1']2)t( ~2 - E2)-l 

(BI5) 
and 

d+(t) = d_{t + 1) == d(t + 1). (BI6) 

= -iW + 1']2)l(.:;-1 ~ + ..f ± (m ± 1).:-1 a; a.: 
+ .:(e ~ 1']2)-1 =f t;-l.:-l(e _ .:2)l) 

X 11'],;,':; s, t, m ± 1) 

=f i[; ± (e - .:2)l]d(t + 1) 

x 11'], ;,.:; s, t + 1, m ± 1) 

=f i[; =f (e - .:2)l]d(t) 

x 11'],;,':; s, t - 1, m ± 1), (BI8) 

where we have also used 

(BI9) 

In order to determine the function d(t), we study 
the covariant spin operator Wit' with 

WItWIt = W2 
- W:. (B20) 

The representations for Wit can be easily obtained 
from Eqs. (817) and (818): 

W± 11'], ;, .:; s, t, m) 

= -.:;-1(;2 + 1']2)!t 11'], ;, .:; s, t, m ± 1) 

=f ~[; ± (~2 - .:2)!]d(t + I) 

x 11'], ;, .:; s, t + 1, m ± 1) 

± ;[; =f (;2 - .:2)l]d(t) 

X 11'],;,':; s, t - 1, m ± 1), (821) 

W 5 11J, ~, 10; s, t, m) 

= _;-1(~2 + 1']2)!(~2 - .:2)lt 11'], ;, .:; s, t, m) 

+ E;d(t + 1) 11'],;,':; s, t + 1, m) 

+ .:;d(t) 11'],;,10; s, t - 1, m), (822) 

which leads to 

W 2 11], ;, .:; s, t, m) 

= [(;2 + 1']2)t 2 + U 4d 2(t + 1) + U 4d2(t)] 

x 11'], ;,10; S, t, m). (B23) 
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Using Eqs. (3.2), (2.23), and (B20), we have 

U4[d2(t + I) + d2(t)] = 1]2[S(S + 1) - (2]. (B24) 

Finally, we consider 

[1:+6' 1:_6] = -21:5' (B25) 
which gives us 

d2(t) - d2(t + I) = !1J2;-4t. (B26) 

Solving Eqs. (B24) and (B26), ~e get 

d(t) = ~1];-2[(S + t)(s - ( + I)]t (B27) 

and ( = -s, -s + I, ... , s, so that d(t) is real. The 
final results for 1:±6' 1:56 , and WJl have been stated in 
Sec. 3. 

APPENDIX C: OUTLINE OF DERIVATION 
FOR :RJl 

The procedure for the derivation of Eqs. (4.11)
(4.14) is similar to that given in Appendix B, only 
more complicated. Here, we shall only give an 
outline of our method. We start with :Rs and write 
down the most general expression, Eq. (4.10), which 
involves 90 unknown functions. 

From 

[:1's, :Rs] = - 2iL03' (Cl) 
we get 

;Doo - eEoo = 21](;2 - e2)!, (C2) 

2;Boo - eFoo = U(;2 - e2)t, (C3) 

;Foo - 2eCoo = 2e(;2 - e2)t, (C4) 

-e2BOO - ;2CoO + e;Foo + ;(;2 - e2)boo 

- e(';2 - e2)coo = 6(';2 - e2)~, (C5) 

';bk1 - eCkl = 0, k, I not all 0. (C6) 

Next, we consider 

[:1' 6 , :Rs] = 2i1:S6' (C7) 

from which we obtain [using Eqs. (C2)-(C6)] 

Akl = te;1]-2Fkl - (Jkl($2 - e2)t, (C8) 

Bkl = te';-lFkl + (JkM 2 - e2)t, (C9) 

Ckl = t.;e1Fkl - (JkM2 - e2)!-, (CIO) 

Dkl = -e1]-lFk1 + 2(Jkl1]';-1(;2 - e2)!-, (Cll) 

Ekl = - ';1]-lFk1 , (CI2) 

where k, I = 0, ± and (Jkl is the Kronecker delta. We 
have 

1]aoo + ;boo = 2($2 - e2)t + (';2 + 1]2)(;2 - e2)-t 

- te;-11]-2(;2 + 1]2)Foo, (CI3) 

'Yjao± + ;bo± = =F e1]';-2(;2 + 'Yj2)~ 
X [(s =F t)(s ± ( + l)]!-. (CI4) 

The commutation relations 

give us 
(CI5) 

(C16) 

Ck1 + e[dkl(m) - dkz(m ± I)] 

= (\z[e(;2 - e2)-t ± 2t';e1 =f 2(m ± I) 
X e 1(';2 _ e2)~), (CI7) 

from which we get 

Ck1 = 0, k, I not all 0, (CI8) 

dk1(m) = dkl , k, I not all 0, (CI9) 

doo(m) = m2e-2(';2 - e2)~ - 2tm;e2 + doo , (C20) 

where doo is independent of m. 
Finally, from 

[L03' :Ks] = i3{,s 

and the unitarity condition, we get 

aoo = 1](';2 - e2)-i - 1]-1(;2 - e2)1, 

boo = ;-1[4(;2 - e2)!- + e2(;2 - E2)-~], 
I: l' 1 Coo = e( ,,2 _ e2)-2 _ e 1(';2 _ e2)2, 

(C21) 

(C22) 

(C23) 

(C24) 

ao±(s, t) = =Fe';-2(;2 + 1]2)!-[(S =f t)(s ± ( + I)]t, 
(C25) 

a±l = 0, (C26) 

bkl = Ckl = 0, k, I not all O. (C27) 

The representation for :Rs can now be written as 

3{,51'Yj, ;, e; s, t, m) 

[ 
2 2 t ( 0

2 
0

2 
0

2 
1] 0 0) (.; - e) - - + - - - + 2---

01]2 oe oe2 
.; 01] 0; 

+ [1]W - e2rt - 1]-l W - e2)t] ~ 
01] 

+ ';-1[4(e - e2rA- + e\e _ e2)-t] ~ 
0; 

+ [e(e - e2r~ - e-1(e - e2)t] ~ 
oe 

+ m2e- 2(e - e2)! - 2tm';e- 2 + doo] 

X 11], ;, e; s, I, m) 

+ (-e;-2W + 1]2)!-[(S - t)(s + 1 + 1)]!-~ 
01] 

+ do+(m») 11],;, e; S, 1 + 1, m) 

+ (e';-\.;z + 1]2)t[(S + 1)(5 - 1 + I)]! ~ 
01] 

+ do_em») 11],;, e; S, 1 - 1, m) 

+ 
+ 2 d+l(m) 11], ;, e; S + 1, t + I, m) 

l~-

+ 
+ 2 d_lm) 11], ;, e; 5 - 1, t + I, m), (C28) 

1=-
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and the unitarity condition gives us the following 
relations: 

d++(s, t) = d __ (s + 1, t + 1), 

d+-_(s, t) = ('-~(s + 1, t - 1), 

d~o(s, t) = d_o(s + 1, t). 

We next consider 

which, after some lengthy algebra, gives us 

d++(s, t, m) 

(C29) 

(C30) 

(C31) 

(C32) 

= [(s + t + 1)(s + t + 2)]!€~-1C(1); ~2 _ €2), 

(C33) 

d+o(s, t, m) 
= 2[(s + t + I)(s - t + 1)]!~-11)-1(~2 + 1)2)& 

X (~2 _ €2)~C(1); ~2 _ €2), (C34) 

d+_(s, t, 111) 

- [(s - t + 1)(s - t + 2)]~€'-IC( 1J; e - €2), 

(C35) 

where C( 1); e - (0
2) is a function of 1) and ~2 - €2 

only and 

do±(s, t, 111) 

[(s =F t)(s ± t + 1)]t 
X {=FE~-2(~2 + 1)2)![±t1)-1 + 1)-1 

+ t1)(~2 + 1)2)-1] + €~-IB(1), ~2 - €2)}. (C36) 

From 
(C37) 

we obtain representations for :I\±, while the commuta
tion relations 

[1:+, :1\+] = 0, 

[:R+ ' C] = 23\5 

(C38) 

(C39) 

further restrict the functions doo , B( 1), ~2 - €2), and 
C(1), ~2 - €2). The final complete results for :1\1' are 
given in Eqs. (4.11)-(4.14), where we have also used 

i[3\5, L56] = ~{6 (C40) 

and 
(C41) 

All other commutation relations can now be shown 
to be satisfied automatically. 
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II) Note added in prooF There is an omission in the discussion of 
the most degenerate principal continuous series and the most 
degenerate complementary continuous series. In both cases we may 
ask the question of the reduction of these series with respect to the 
"spacelike" representations of £(3, I). Parallel to the derivation of 
Eqs. (7.71)-(7.87), we define 

r(w,~, €,i.) == (j= 0,/1 = O;k = O,v = 0; i., w,~,€; r = I, 

t = 0, m = 0), 

where the trivial I-dimensional UIR of SU(I, \) is usee, and obtain 

[ ( 
02 I a I I P') A' I a I I P') ] 

x ax' + x ax - '4 + '4 X' + y(oy' + y ay - '4 + '4 Y" 
x h(x, y, i.) = 0, (7.81') 

[X2( {)' + ~ i - ~ + ~ ~) - y2( {)~ + ~ ~ - ~ - ~ ~)J oX' x ax 4 2 x oy' Y oy 4 2 Y 

with 
x h(x, y, i.) = 0, (7.82') 

(7.80a') 

(7.80b') 

and the final result 

j(w,~, €; i.) = cO., plW - (2)-!W - w 2)-1,;-1 

X {Wl 1i.+1),J'p(x)W -Jli.-II ,J'p(v) 

+ :Hi,' + l)WJu.-l),J,p(X)W-JIi,~lI.\,p(v») (7.87') 

The analogous result [Eq. (7.89')] may be obtained by substituting 
ip ---+ a in Eq. (7.87'). Therefore, the above two series contain both 
"timelike" and "spacelike" representations of E(3, 1). 

I wish to thank Dr. N. Macfadyen for correspondence and a 
preprint of his paper, "Conformal Group in a Poincare Basis. I. 
Principal Continuous Series" [J. Math. Phys., (to be published) 
(1971 )1, which led to the discovery of the oversight in my manuscript. 
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The relation between the solutions of the time-independent Schrodinger equation and the periodic 
orbits of the corresponding classical system is examined in the case where neither can be found by the 
separation of variables. If the quasiclassical approximation for the Green's function is integrated over 
the coordinates, a response function for the system is obt'l.ined which depends only on the energy and 
whose singularities give the approximate eigenvalues of the energy. This response function is written 
as a sum over all periodic orbits where each term has a phase factor containing the action integral and 
the number of conjugate points, as well as an amplitude factor containing the period and the stability 
exponent of the orbit. In terms of the approximate density of states per unit interval of energy, each 
stable periodic orbit is shown to yield a series of 0 functions whose locations are given by a simple 
quantum condition: The action integral differs from an integer multiple of h by half the stability angle 
times n. Unstable periodic orbits give a series of broadened peaks whose half-width equals the stability 
exponent times n, whereas the location of the maxima is given again by a simple quantum condition. 
These results are applied to the anisotropic Kepler problem, i.e., an electron with an anisotropic mass 
tensor moving in a (spherically symmetric) Coulomb field. A class of simply closed, periodic orbits is 
found by a Fourier expansion method as in Hill's theory of the moon. They are shown to yield a well
defined set of levels, whose energy is compared with recent variational calculations of Faulkner on 
shallow bound states of donor impurities in semiconductors. The agreement is good for silicon, but 
only fair for the more anisotropic germanium. 

INTRODUCTION 

The Green's function of a simple quantum me
chanical system can be approximated with the help of 
quantities which arise from the corresponding classical 
mechanical system. This idea has been explored in a 
series of three papers,l where it was shown that all the 
well-known results of the WKB method for bound 
states can be obtained in this manner without any 
further assumptions or rules. In the last paper the 
concept of a semiclassical density of states per unit 
interval of energy was introduced and tested for a 
particle in a box and in a spherically symmetric poten
tial. It turned out that the classical periodic orbits alone 
determine this density of states and are, therefore, 
responsible for the occurrence of stationary states, i.e., 
regions of large density along the energy axis. 

The present paper extends this last idea to particles 
in a potential where neither SchrOdinger's equation 
nor the corresponding classical equations of motion 
can be separated, i.e., reduced to as many independent 
motions as degrees of freedom. In other words, the 
phase-integral approximation is extended to systems 
which are not multiply periodic, and quantization 
conditions d fa Bohr and Sommerfeld are derived for 
cases in which none had been formulated so far. The 
arguments and the results involve only notions from 
classical mechanics which were well known to the 
astronomers at the end of the 19th century, in par
ticular, Hill and Poincare. Unfortunately, the present 
day education in physics ignores these classical results. 
It seemed, therefore, necessary to explain them III 

some detail in the context of the present work. 

The first section recalls the quasiclassical approxima
tion for the Green's function and its reduction to a 
density of states. Then, we show that only periodic 
orbits contribute to the latter quantity if we restrict 
ourselves to the leading term of an expansion in 
powers of Planck's quantum. The density of states 
appears as a sum over all periodic orbits for a given 
energy. Each term in this sum is an integral over the 
periodic orbit which has to be evaluated. This task is 
carried out in Sees. 2, 3, and 4. Great care is taken to 
stay away from any special assumptions about the 
mechanical system except that it has a Hamiltonian 
which is independent of time. The original expressions 
involve only the action integral between two points 
along a classical trajectory. But, after some rather 
elementary calculations, everything can be expressed 
in terms of the action around the periodic orbits as a 
function of the energy, the number of conjugate 
points, and the stability exponents. 

The result is most conveniently written as a kind of 
response function for the system in a complex energy 
plane such that its discontinuity along the real energy 
axis equals the density of states. This response function 
is remarkably similar to the so-called zeta function 
which mathematicians have investigated in order to 
survey and classify the periodic orbits of abstract 
mechanical systems. 2 Actually, we are tempted to 
propose our response function as the appropriate 
object of study rather than the zeta function, because 
the latter does not include any information about 
conjugate points and stability in its definition. The 
behavior of trajectories in the neighborhood of a 
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periodic orbit is, of course, a very important ingre
dient if we think of Feynman's approach to quantum 
mechanics. But, if the periodic orbits are the key to 
the understanding of a mechanical system as Poin
care suggested, we will surely have to see them as tied 
in with their environment of neighboring trajectories: 
and this environment is most aptly described by the 
number of conjugate points and the stability exponent, 
independently of any implications for quantum 
mechanics. 

The formulas at the end of Sec. 4 are a straight
forward consequence of the general expression for the 
approximate Green's function which has been used 
ever since it was derived in the first paper of this series. 
These formulas have a simple physical interpretation, 
but they are unsatisfactory in one respect. Every time 
a particular periodic orbit has a conjugate point after 
nearly one period, its contribution to the response 
function is very large. This feature is not surprising 
because the wave amplitude at a focus is infinite 
according to ray optics, although it remains finite 
according to wave optics. The large amplitude near a 
conjugate point is an artifact of our approximation, 
and we have modified the formulas to get rid of this 
effect in agreement with the known behavior of a 
wavefield near a focal point. This modification, 
however, looks like an ad hoc improvement, contrary 
to the treatment of focal points in the preceding paper. 
The situation is discussed in Sec. 5 for stable orbits 
and in Sec. 6 for unstable ones. In the first case we end 
up with a series b-function spikes in the density of 
states which are located by a simple quantization 
condition involving explicitly the stability angle. In 
the second case we get broadened peaks whose width 
is given by the instability exponent and whose maxima 
are given by an ordinary quantization condition 
such as are found in the earlier papers. The most 
general case of a periodic orbit in three dimensions 
with a complex exponent (rather than a purely imagi
nary or purely real one) is not discussed, but it is ex
pected to combine the features of the two simpler cases. 

The last two sections of this paper treat a simple 
example of a nonseparable problem of some practical 
importance, the bound states of an electron near a 
donor impurity of a semiconductor. The Hamiltonian 
differs from that for the hydrogen atom in having an 
anisotropic mass tensor, although the potential is due 
to an ordinary (spherically symmetric) Coulomb field. 
The virial theorem is still true, however, and a 
simplified form of Kepler's third law is valid. But the 
periodic orbits are isolated at any given energy, and 
have to be found by numerical methods unless the 
anisotropy is very small. 

Only one type of periodic orbit is investigated 
because it can be obtained by the same kind of Fourier 
expansion which Hill used in his classic theory of the 
motion of the moon. This orbit corresponds to a state 
of maximum angular momentum compatible with the 
principal quantum number. It is always unstable and 
has the same number of conjugate points as the orbits 
of the ordinary Kepler problem. The formula for 
these energy levels looks, therefore, almost like the 
Balmer formula except for the normalization of the 
energy which depends on the anisotropy. A compari
son of these semiclassical, approximate energies is 
made with the variational calculations of Kohn and 
Luttinger:l and, more recently, of Faulkner. ' It turns 
out that Faulkner's designations of levels have to be 
changed before they can be made to correspond to our 
results. Although the agreement i'i good for silicon 
and reasonable for germanium, a final assessment of 
our quasiclassical approach has to wait until other 
types of periodic orbits have been evaluated and until 
there is a complete enumeration of the possible 
energies and their symmetries as far as classical 
mechanics can tell. 

I n this way we are finally faced with the following 
crucial question: What is the relation between the 
periodic orbits in the classical system and the energy 
levels of the corresponding quantum system? It seems 
that for the low-lying states there is a one-to-one 
correspondence if the classical orbits are quantized 
according to the rules of this paper. On the other 
hand, it also looks as if the more complicated orbits 
are less stable and their peaks in the density of states, 
therefore, wider, i.e., less distinct. Even more serious 
is the fact that there is usually more than a countable 
number of periodic orbits in a mechanical system," 
whereas the bound states of an ordinary Hamiltonian 
are countable. It is not clear at all at what point the 
apparent simple relation between periodic orbits and 
discrete energy levels breaks down, particularly since 
the semiclassical approach to quantum mechanics is 
supposed to be the better the larger the quantum 
number. 

1. THE RESPONSE FUNCTION 

The Hamiltonian H(Pq) of the system is assumed to 
allow only for a discrete group of symmetry operations. 
Both spherical and cylindrical symmetry are explicitly 
excluded from the following investigation because they 
present special problems which have been examined 
in an earlier paper. The anisotropy of the Hamiltonian 
can arise in the kinetic energy as well as in the potential 
energy. Therefore, it will not be assumed that the 
velocity if is simply proportional to the momentum p. 
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The two quantities will be carefully separated when
ever they arise. On the other hand, the mass will not 
appear at all except in the discussion of special ex
amples. 

The starting point is the quasiclassical approxima
tion O(q"q' E) to the Green's function G(q"q'E) for the 
position coordinates q' and q" and the energy E. 
According to the preceding papers, 

G(q"q'E) = - ~ 
2nli 

L (I Ds!)! 
classical 

trajectories 

(
S(qllq'E) ) 

X exp Ii - phases, (1) 

S(q"q'E) =jq"P dq, along the classical trajectory, 
Q' 

(2) 

and Ds is the 4 X 4 determinant of the mixed second 
derivatives of S(q"q'E), 

02S 02S 

oq'oq" oq'oE 
(3) D.= 

02S 
0 

oEoq" 

The "phases" are given by nl2 times the number of 
conjugate points along the trajectory. The above 
formulas are written for three dimensions, but they 
are valid for two dimensions provided that we insert 
an additional factor (2nli)! exp (in/4). 

As in the preceding paper, we integrate over all 
values q' = q" to get the response function 

gee) =Jd3q G(qqE) = L _1_ , 
i E - E j 

(4) 

where j labels the eigenstates of the quantum me
chanical system and Ei the correspondingenergies. The 
quasiciassical approximation gee) requires that G(qqE) 
be integrated, and we assume that this can be done 
separately for each term in the summation over all 
classical trajectories. 

At this point, a simple, but essential, argument 
enters into the discussion. If we pick a particular 
classical trajectory whose initial point q' coincides 
with the final point q", this trajectory exists even when 
the point q' = q" = q is varied over a certain neighbor
hood. In keeping with the general methods of approxi
mating quantum mechanics by classical mechanics, we 
assume that the variation with q of the phase factor 
exp (iSIIi) is fast compared to the variation of the 
amplitude factor (IDsl)!. The rate of variation is 

determined by the partial derivative 

oS(qqE) = (as(q"q'E) as(q"q'E») 
::l' + a" oq uq q q'~q"=q 

= p" - p', (5) 

where p' and p" are the initial and final momenta of 
the classical trajectory which starts at q and ends at q. 
The integral over q becomes very small because of 
destructive interference unless p" = p', i.e., the 
classical trajectory is periodic. Therefore, in discussing 
gee), the summation over the classical trajectories can 
be restricted to a summation over the periodic orbits. 

The integration over q' = q" = q is most conven
iently performed by introducing a coordinate system 
where q1 varies along the periodic orbit and the 
remaining q2 and q3 are perpendicular to the periodic 
orbit. For a given point ij on the periodic orbit, we 
expand 

S(qqE) = S(ijijE) + (aS, + O~,) . bq 
oq oq q'=o"=o 

1 ( 02S + 2 a2s 02S ) b b 
+ '2 oq'oq' oq'oq" + oq"oq" Q'=Q"=fj' q q, 

(6) 

where bq has the two components q2 - ijz and q8 - ija· 
The linear term vanishes everywhere along the periodic 
orbit, and we assume that the quadratic term is 
singular only for isolated values of g. 

The integration over q2 and q3 is performed by the 
stationary phase method for each value of g along the 
periodic orbit. The result is straightforward, 

X exp i(S~E) - Phases) exp(±tin ± tin) / 

(detl~ + 2~ + ~I )!, (7) 
oq'oq' oq'oq" oq"oq" 2,3 

where the double signs refer to the signs of the eigen
values for the quadratic term in (6) and the index 2, 3 
on the last determinant refers to the variables per
pendicular to the periodic orbit at any point ij. The 
action integral S(ijgE) has been written as See) 
because it is obviously independent of the point g. 

The 2-dimensional case differs from the above only 
in having exp (±iin ± !in) replaced by exp (!in ± 
tin) and the determinant in the denominator con
sisting of the second derivatives with respect to q2 
only. 
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The integral over if has to be evaluated in terms of 
simple quantities which belong to the periodic orbit 
as a whole rather than to any particular point of it. 
This will be done in the next sections. 

2. SPECIAL COORDINATES FOR A PERIODIC 
ORBIT , 

The derivatives of S(q'q"E) will always be evaluated 
on the periodic orbits, i.e., for q' = q" = if, in the 
Secs. 2, 3, and 4. But this fact will not be specifically 
mentioned. Also we shall always use a coordinate 
system where ql is parallel to the periodic orbit. 

The partial differential equation for S(q"q'E) will 
be used in both forms 

H(- oS ') = E oq" q , 

H(OS If) = E. 
oq'" q 

From their derivatives with respect to E, we get 

oH 02S 
--·--=1, 

op' oEoq' 

oH.~= 1. 
op" oEoq" 

(8) 

(9) 

(10) 

Since q = oH/op = (Iql, 0, 0) in our special coordi
nate system, it follows that 

02S 1 
--=--, 
oEoq{ Iql 

(II) 

Furthermore, by differentiating (8) with respect to q~ 
and (9) with respect to q; , we get 

oH 02S 
- L -0 " 0 "0 I = 0, 

i Pi qi q j 

~oH·~_o 
fop'; oq;oq'j - . 

(12) 

Again, with q = oH/op = (Iql, 0, 0), it follows that 

02S 02S 
oq;oq~ = oq:oq~ = o. (13) 

The determinant D. is thereby reduced to 

a2s 02S 
1 oq~oq~ oq~oq; 

D =-
8 Iql2 a2s a2s 

(14) 

oq~oq; oq~oq; 

The first factor in (14) combines with dq in (7) to give 
dt = dq;q. If the remaining factors in (7) remain 
constant along the periodic orbit, the integral over q 

yields f dt = T, the period, i.e., the time required for 
the particle to go around the periodic orbit. 

In order to see that the remaining terms in (7) are, 
indeed, constant along the periodic orbit, we examine 
the two related concepts of monodromy matrix and 
area preserving maps for a periodic orbit. They are 
explained in some of the standard texts on classical 
mechanics. 6 Our task is to express them in terms of the 
second derivatives of S(q"q'E). 

3. TRAJECTORIES CLOSE TO THE PERIODIC 
ORBIT 

Consider the trajectory which starts with the 
coordinates q' = q + ( and the momenta p' = p + 
r/ in the neighborhood of the coordinates q and 
momenta p on the periodic orbit. After a time T equal 
to the period of the periodic orbit, the particle will be 
at the coordinates q" = q + ~" and the momenta 
p" = p + r;". The 6 x 6 matrix which is defined by 

(15) 

is called the monodromy matrix. 
On the other hand, consider a trajectory of energy 

E which starts with a coordinate q{ = ql' After a time 
t which is close to T, this trajectory will reach an 
end point where again q~ = ql' Thus, the 4-dimen
sional subspace of phase space where ql = const and 
E = const is mapped into itself. This mapping 
preserves the 4-dimensional volume and has a fix 
point at the periodic orbit. In the neighborhood of the 
periodic orbit the mapping is given by a linear trans
formation e. Our goal is to express both e and M in 
terms of the second derivatives of S(q"q'E) at the 
periodic orbit. 

M contains some information which is of no great 
physical interest. If ~' = qbt and r;' = pbl with some 
arbitrary small bt, one finds that t' = qbt and (' = 
pbt because the trajectory coincides with the periodic 
orbit. Moreover, there is a periodic orbit whose 
energy differs by some arbitrary small bE from the 
original periodic orbit. Its initial coordinates and 
momenta are a little harder to find. 

Starting from the general formulas 

, oS(q'q"E) " as(q'q"E) 
p = - , p = 

oq' oq" 
(16) 

one finds at once that 

, _ _ 02S (_ ~~" _ ~ bE 
1] - oq'oq' oq'oq" oq'oE' 

"=~f+~~" ~OE. 
r; oq"oq' oq"oq" + oq"oE 

(17) 
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The conditions 1/ = r/, = 1] and ~' = ~" = ~ for a 
periodic orbit give the equations 

( 18) 

Neither the first term in (18) nor the second has any 
components in the direction ql' For the second term 
this follows directly from (II), whereas for the first 
term we can use (12) together with 

+ '" oH ~ + oH _ 0 (19) 
"-::' u::. u::. U ::.,,-, 

J up; uqiuq j uqi 

and 4 = oH/op = (141,0,0). It is equally obvious 
that (18) cannot be solved for bE = 0 with a vector ~, 

Iql 0 

jjl {J1 

0 "'2 
0 "'a 

h {J2 

Pa {Ja 

where Y2 and Ya are chosen to meet the requirement 
bH = 0, which leads to 

141 Y2 + oH = 0, 141 Ya + oH = o. (21) 
OQ2 oQa 

The determinant of the matrix L in (20) equals I. 
But L does not constitute a canonical transformation. 
If J is the 6 x 6 matrix which defines the bilinear form 

~~17~ - 11~~{ + ~~17; - 17~~~ + ~;17~ - 17~~~' the ma
trix 

0 1 0 0 0 0 

-I 0 -{J2 -{Ja "'2 "'a 
0 {J2 0 0 1 0 

L+JL = 
0 {Ja 0 0 0 I 

0 -rt.2 -1 0 0 0 

0 -:X2 0 -1 0 0 

(22) 

differs from J by the occurrence of CI.'S and {J's in the 
second row and second column. (L -,- is the Hermitian 
conjugate of L, i.e., the transpose of L in this case.) 

0 

Y2 
1 

0 

0 

0 

where second and third components vanish. On the 
other hand, Eqs. (18) do have a unique solution pro
vided that the quadratic form in (6) is not degenerate 
or, equivalently, the determinant in the denominator 
of (7) does not vanish. Thus we find a periodic orbit 
starting and ending at ~l = 0, ~2 = rJ,2bE, ~a = rJ,3bE, 
111 = {JlhE, 172 = (J2bE, and 1]a = fJabE, where rJ,2 and 
:X3 follow from (18), with fJl, fJ2, and fJa then given 
by (17). 

The trajectories which enter into the area pre
serving map () are characterized by the conditions 
~; = 0 and bH = O. They can be defined in terms of 
their intersection with the space ql = const, H = 
const by four quantities bq2' bqa, IJp2' and bps which 
give the coordinates and momenta in the space ql = 
const, H = const. Thus, instead of ~ and 17, we use 
hI, bE, hq2, hqa, bp2' and bpa to determine initial and 
final points of trajectories in the neighborhood of the 
periodic orbit. The matrix relating the two reference 
systems is given by 

0 0 0 

Ya 0 0 

0 0 0 

I 0 0 
(20) 

0 I 0 

0 0 

This defect does not impair any of the following 
arguments, however. 

The monodromy matrix is given in the new coordi
nate system by 

I '2 C& ~ 05:' 0 

0 0 0 0 0 

0 0 . reduced matrix L-IML = 
0 0 for trajectories 

0 0 with bH = 0 

0 0 . and bql = 0 

(23) 

The nonzero elements in the first row are due to the 
fact that all trajectories run through a constant time 
interval T in the monodromy matrix. Their end 
points are not in the subspace bql = O. If the running 
time of the trajectories with bt = 0 and bE = 0 is 
shortened by the amount calculated from the first 
row, their end points will be in the subspace bql = O. 
Therefore, the 4 x 4 matrix in the lower right-hand 
corner of (23) is exactly the area preserving map O. 
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4. THE STABILITY INDICES OF THE PERIODIC 
ORBIT 

The area preserving transformation e can be 
obtained from the general formulas (16): 

15 '- - ~ ~ 15 ' _ ~ 02S 15 ': 
Pi - k::l '::l ,qj k::l '::l " q;, 

1=2 uq iuq 1 1=2 uqiuq 1 

15 "- ~ ~ 15 ' + ~ ~ 15 " (24) Pi-£"::l"::l' q1 k::l"::l" q;, 
j=2 uqi uq j ;~2 uqi uq j 

where the index i assumes only the values 2 and 3. In 
terms of the corresponding 2 X 2 matrices 

02S 
a=--, 

oq'oq' 
02S 

b=--, 
oq'oq" 

02S 
C = --, (25) 

oq"oq" 

The characteristic determinant has been reduced from 
4 x 4 to 2 x 2. Upon comparing the last expression 
with the amplitude in (7), it is obvious that the ratio 
of the two determinants in (7) is exactly equal to F( 1). 

It is a general theorem of stability theory, and it is 
immediately obvious from (30) that the eigenvalues 
of e come in pairs which are mutually reciprocal. 
Since the coefficients in F(A) are real, its roots also 
come in pairs which are complex conjugate. A number 
of special cases can be distinguished according as the 
eigenvalues are real or lie on the unit circle of the 
complex plane. 

In two dimensions we have only two cases: 
(1) F(A) has two real roots A = eU and e-u ; the 

periodic orbit is unstable, and we find that 

F(l) = -4(sinh }U)2. (31) Eqs. (24) can be written more simply as 

t5p' = -abq' - Mq", 

.. " up = b+bq' + c(jq". 

(2) F(A) has two roots on the unit circle A = eiv 

(26) and e- iV ; the periodic orbit is stable, and we find that 

The area preserving transformation e can be written as 

bq" = At5q' + Bbp', 

bp" = Cbq' + Dbp'. 

A comparison with (26) yields immediately 

A = -b-1a, 

C = b+ - cb-1a, 

B = -b-l, 

D = -cb-l • 

(27) 

(28) 

Only the existence of the 2 x 2 matrix b-l is required; 
the determinant of b occurs in DB according to (14), 
so that when b is singular, the amplitude in (7) 
vanishes. 

The eigenvalues of e are given by the roots of the 
characteristic determinant 

l
A-AI B I 

F()') = det C D _ ).[ . (29) 

After the expressions (28) have been inserted into (29), 
we add -c times the first line to the second line. In 
this manner, we find the following (progressively 
simpler) formulas: 

F()') = I-b-l 
- AI _b-11 

b+ + AC -AI 

1 I-a - Ab 
= jbj b+ + AC 

-/ I 
-AI 

1 I -a - Ab 
= jbj b+ + Aa + AC + A2b 

det Ib+ + Aa + AC + A2bl 
F(A) - --------

- detlbl . 
(30) 

F(1) = 4(sin tv? (32) 

In three dimensions we can have any combination 
of the two preceding cases plus a new case which 
arises when F(A) has four complex roots A = eu+iv , 

e u- iv , e-u- iv , and e-u+iv, where u -:;rf 0 and v is not a 
multiple of 1T. The periodic orbit shows a complex 
behavior and we can write 

F(l) = 16(sinh2 tu cos2 tv + cosh2 tu sin2 tv)2. (33) 

This last case is expected to arise whenever the 
periodic orbit has no simple symmetry property such 
as lying in a plane of symmetry for the mechanical 
system. 

It is evident that F(l) is the same for all points 
along a periodic orbit. The integration over if in (7) 
can be performed as indicated at the end of Sec. 2. 
Before writing down the final result for geE), however, 
it is necessary to discuss the double signs in (7) 
together with the stability conditions of the periodic 
orbit. 

5. STABLE ORBITS 

Systems with two degrees of freedom will now be 
discussed. If the periodic orbit is stable, we have 
F(!) > O. The number of conjugate points along the 
orbit is even or odd according as 

and, therefore, 

~<o or >0, 
aq~aq~ 

(34) 
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The last condition is responsible for a factor 
exp (li7l' T li7l') according to (7), whereas the phase 
loss due to conjugate points accounts for a factor + I, 
-i, -I, and +i according as the number of conju
gate points equals 0, 1,2, or 3, modulo 4. Thus, in all 
cases the amplitude factor for a stable orbit turns out 
to be real. 

Let us now consider a particular stable periodic 
orbit and obtain its contribution to the response 
function geE). Such an orbit is represented by more 
than one term in the summation over all periodic 
orbits because it can be traversed once, twice, three 
times, etc. The number of conjugate points during 
one, two, three, etc., periods varies somewhat 
capriciously. But it can easily be related to the stability 
angle v which enters into the amplitude according to 
(32). 

The trajectories close to the periodic orbit define an 
area preserving map between the phase spaces 
«()p~, bq;) and (lip~ ,(jq~) which belong to any two 
points q' and q" of the periodic orbit. If we fix q' and 
let q" run around the periodic orbit starting at q', the 
angle v of the map from (lip;, ()q;) to (bp~ , bq~) varies 
smoothly. Each time v equals a multiple of 71', a 
conjugate point arises. If we disregard any local 
maxima or minima of v as a function of the time along 
the periodic orbit and if we choose a direction of 
motion such that v increases, the number of con
jugate points equals the number of times 71' is contained 
in v. 

The angle v was determined only up to a multiple 
of 271' in the preceding section. We shall now choose v 
such that it reflects the number of conjugate points 
along the periodic orbit appropriately, or in any case 
as it arises when the point q" reaches the initial point 
q' after one, two, three, etc., periods. If vI/is the 
stability angle after n periods, then we have clearly 
vn = n . VI' Similarly, if S" is the action integral 
after n periods, we have Sn = n . SI' The factor T as 
obtained from (14) is independent of the number of 
periods, however, because it comes from an integra
tion over coordinate space, not over time. 

After all these preliminary explanations, we can now 
combine (32) with (7). The contribution of a particular 
stable periodic orbit to geE) becomes simply 

- - I exp in-TOOl (S) 
Ii n=1 2 sin tnv Ii ' 

(36) 

where we have written v and S instead of VI and S1' 

It should be noted that there is no trace of conjugate 
point bookkeeping in (36). The denominator in each 
term takes care of that. It is instructive to check how 
this happens. With no conjugate point there is a 

factor exp (li7l' - {i7l') and no phase loss, but v < 71'. 
With one conjugate point there is a factor exp (li7l' + 
li7l') and a phase loss of -71'/2, but 71' < l' < 271'. With 
two conjugate points there is a factor exp (li7l' -
li7l') and a phase loss of -71', but 271' < J' < 371' so that 
sin (1'/2) < O. Finally, with three conjugate points 
there is a factor exp (li7l' + li7l') and a phase loss of 
-371'/2, but 371' < l' < 471' so that sin (1'/2) < O. 

If a particular stable periodic orbit is isolated, as was 
assumed in the discussion of Sec. 3, it can be followed 
as the energy E changes. Its contribution to geE) is 
given by (36) whose imaginary part will yield the 
density of states as due to this orbit. Before studying 
the behavior of (36) as E varies, it is important to 
understand the physical origin of its main features. 

Since the argument of the exponential contains 
Planck's constant Ii (divided hy 271'), a quantity 
entirely outside classical mechanics, we can consider 
S/Ii and v as varying independently, although both are 
functions of the energy E. The response function 
,~(E) is always used together with an integration over 
E. Because of T = as/aE, we have, therefore, the 
relation elE(T/Ii) = ciS/ii. The factor TIIi transforms 
the integration over the energy as independent vari
able into an integration over the action normalized 
by Planck's constant. Formula (36) describes, apart 
from the denominator, the interference of waves 
which run around the stable periodic orbit once, 
twice, etc. 

The denominator is obviously due to the presence of 
focal points along the orbit. In particular, the ampli
tude of any term in (36) is large whenever an even 
conjugate point is near the starting point of the 
particle. It is well known, however, that the approxima
tion (I) for the Green's function breaks down near 
the focal point. As was shown in the preceding paper 
for certain special examples, the amplitude remains 
finite, and the phase loss is exactly half what it is upon 
traversing the focal point completely. The singularities 
in (36) when nv = multiple of 271' are unphysical and 
have to be replaced by a more reasonable function of 
v. Although a detailed investigation of the focal points 
is required to make (36) really useful, a more intuitive 
approach gives good results. 

Formula (36) gives a finite amplitude near an odd 
conjugate point, i.e., where nv = (2/ + 1)71' with / 
integer. We can, therefore, argue that (36) is correct 
for odd conjugate points, and we have only to see to 
it that the phase los~ is continuous. The phase jumps 
by 71' near an even conjugate point have to be smoothed 
out, and the amplitude has to be reduced to what it is 
for an odd conjugate point. It is clear that passing a 
conjugate point always brings a loss (not a gain!) of 
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phase. The accumulated loss is given by nvl2 as 
discussed earlier. In two dimensions one starts with a 
phase factor ei1T

/
4 at the beginning of any trajectory. 

This initial phase of 7T/4 is decreased by tm7T - i7T 
in the mth conjugate point where the extra -7T/4 
corresponds to half the loss of 7T/2 upon traversing the 
mth conjugate point. If m7T is replaced by v, we end 
up with the formula 

T ~ (. S. v .7T) - - "",exp In - - In - + 1-
21i n=l Ii 2 2 

(37) 

to replace (36). Formula (37) coincides with (36) when 
nv = (2/ + 1)7T and replaces the discontin·uous phase 
dependence with occasional infinite amplitudes by a 
linear phase loss with constant amplitude. Although 
the above reasoning is hardly foolproof, the final 
formula (37) incorporates the essential physical 
features of (36) without its obvious shortcomings. 

The formal evaluation of (37) is trivial because it 
can be considered as a geometric series. Thus, we get 

iT exp ;(S/ Ii - v/2) 

21i I - exp ;(S/ Ii - v12) 

T (S V) . = 41i cot 21i - 4: + 1 

= ! OS[ I + Y'( I ) + iJ 
20E S - ~vli -00 S - tvli - 2m7T1i ' 

(38) 

where we have used the partial fraction expansion of 
cot. The factor t disappears when we take into account 
that each periodic orbit can be traversed in two 
directions, "forward" and "backward." 

The response function geE) has a simple pole of 
residue 1 at an energy which is given by the condition 

S = (2m7T + v12)1i (39) 

for each stable periodic orbit. In other words, the 
density of states has a b-function singularity of 
strength 1 for each stable periodic orbit which satisfies 
(39). This condition seems to be the generalization of 
the classical quantization rule of Bohr and Sommerfeld 
to mechanical systems which are flot multiply periodic, 
i.e., systems which cannot be decoupled into sub
systems of one degree of freedom each, with the help 
of appropriate constants of motion. Although (39) is 
simple enough, the author has never seen it derived or 
even mentioned in any textbook or research paper. 

6. UNSTABLE ORBITS 

Consider now an unstable periodic orbit in a system 
with two degrees of freedom. According to (31) we 

have F(1) < O. The number of conjugate points along 
the orbit is even or odd according as 

and, therefore, 

~<O or >0, 
Oq20q~ 

(34) 

a2s 02S 02S 
oq~oq~ + 2 Oq20q; + oq;oq~ > 0 or < O. (40) 

The last condition is responsible for a factor 
exp Ui7T ± ti7T) according to (7), whereas the phase 
loss due to conjugate points equals 7T/2 times the num
ber of conjugate points. Thus, in all cases the am
plitude factor for an unstable orbit is purely imaginary. 

The contribution of a particular unstable periodic 
orbit to geE) contains again more than one term 
because the orbit can be traversed once, twice, etc. 
The number of conjugate points is simply proportional 
to the number of periods. Thus, if there are I con
jugate points for a simple period, there will be n . , 
conjugate points for n periods. Similarly, the action 
integral will be nS and the instability exponent nu, if 
Sand u are the action integral and instability exponent 
for a single period. 

In analogy to (36), the contribution of a particular 
unstable periodic orbit to geE) is given by the sum 

- Q'i I exp [in (§. - 1 :!!:)J. (41) 
Ii n=l 2 sinh tnu Ii 2 

The bookkeeping of conjugate points is trivial, as can 
be understood from the following argument. Consider 
a trajectory in the neighborhood of the unstable 
periodic orbit and let it start with bp~ ¥: 0, bq; = O. 
The successive crossings of the plane bql = 0, i.e., the 
points (bp~, Dq;) after one, two, etc., periods, lie on a 
hyperbola which is centered at bp2 = 0, bq2 = O. 
Therefore, one can never have bq~ = 0 as would be 
required if a conjugate point were to coincide with 
the initial point. Unstable periodic orbits are quite 
different from stable ones in this respect. 

Formula (41), however, suffers from the same 
shortcoming which forced us to modify (36). If a 
conjugate point happens to be close to the "end 
point" of the periodic orbit, i.e., if it occurs shortly 
before or after one period, the starting formula (I) 
is poor. This fact manifests itself in a large amplitude 
because u is small, exactly as the amplitudes in (36) 
are large when nv is a multiple of 27T. As in the pre
ceding section we argue now that the sinh (nuI2) in the 
denominators of (41) should be replaced by a factor 
exp (-nuI2) in each term. This eliminates the singu
larity for small nu and preserves the exponential decay 
for large nu. 
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The contribution of a particular unstable periodic 
orbit to geE) is thereby modified to 

_ iT ~exp (in §.. - inl '!!. - II ~). 
2n ,,~1 Ii 2 2 

(42) 

For u > 0, this is a convergent geo~etric series which 
can be transformed exactly as (38) into 

10S[ 1 
20E S - (!l7T - liu)h 

+L +--+1. +00 ( 1 ]) .J 
-00 S - (2m7T + tl7T - tiu)n 2m7Tn 

(43) 

Again the factor t disappears when we take into ac
count that each periodic orbit can be traversed in two 
directions. 

The response function geE) has simple poles of 
residue I, but not on the real energy axis. If we 
calculate the density of states along the real energy 
axis from 

i-. [g(E + iO) - geE - iO)] 
217 

oS +00 tun L (44) 
= oE m~-oo [S - (m + !1)27Tlif + <tUIi)2 

[cf. formula (10) of III], we find a series of broadened 
peaks. Their maxima are located at 

S = (m + 1/4)27T1i, (45) 

and their half-width is given by uli, i.e., the distance of 
the two points along the S axis where the Lorentzian 
has dropped to half its peak value. The sharpness of 
the peaks, i.e., their width divided by their distance, 
is given by U/27T. 

If our qualitative arguments are correct, we find the 
following situation: Stable periodic orbits give rise to 
b-function singularities in the quasiclassical density of 
states at the energies which are given by the condition 
(39), whereas unstable periodic orbits give broadened 
peaks whose maxima are given by the condition (45). 
It was shown in III that there is, in general, a con
tinuous background besides the b-function singular
ities in the quasiclassical density of states. But the 
examples of III showed that all the eigenstates of 
Schrodinger's equation correspond only to the 
b-function spikes, not the continuous background. It 
now appears, however, that the background cannot be 
neglected if the mechanical system has unstable 
periodic orbits. 

This conclusion is, of course, rather unsatisfactory 
because it does not allow us to formulate a simple rule 
by which one could pick the approximate eigenvalues 
of the energy out of the quasiclassical density of 
states. On the other hand, even the broadened peaks 
associated with unstable periodic orbits are well 
defined as long as the exponent u is small compared 
to 27T. It may even be that the idea of a quasiclassical 
density of states was only useful in the derivation of 
the quantum conditions (39) and (45). The real 
question to be answered is the following: Is there a 
one-to-one correspondence between the eigenvalues 
of Schrodinger's equation and the energies given by 
the conditions (39) and (45)? 

7. AN EXAMPLE FROM SEMICONDUCTOR 
PHYSICS 

Let us consider an electron which is bound by an 
impurity of the donor type in one of the classical 
semiconductors, Si or Ge. Its wavefunction extends 
over many unit cells of the crystal lattice because the 
Coulomb attraction of the positively charged impurity 
is reduced by the large dielectric constant K. Moreover, 
the effective kinetic energy is quadratic in the momenta, 
but since the conduction band minimum is not at a 
point of high crystal symmetry, this quadratic form 
is not a multiple of Ip12. In an appropriate coordinate 
system the Hamiltonian is given by 

2 2 2 e2 
H(p, q) = l!.!.. + P2 + Pa _ - , (46) 

2ml 2m2 K Iql 

where e is the electronic charge and the electronic mass 
tensor is given by m l and m2 • There is cylindrical 
symmetry around the I axis contrary to our previous 
hypothesis. But, in view of m1 > m2 , the periodic orbits 
of lowest energy lie in a plane through the 1 axis, and 
we shall confine our attention to these. An additional 
complication has been neglected because we will 
consider only a single conduction band minimum, 
whereas there are six in Si and four in Ge. Each energy 
level is split according to this degree of freedom into 
sublevels. Any comparison of our results with experi
ments requires that we average over the corresponding 
sublevels. 

The periodic orbit in the (ql' q2) plane satisfies the 
equations of motion 

mli/l = -e2ql/K Iq13, m2i/2 = -e2q2!K Iq13. (47) 

In order to obtain dimensionless variables, we use the 
following units of energy, length, and frequency: 

(48) 
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where mo = (m1 . m2)!' The new time parameter is 
'T = wot, and the new coordinates are 

~('T) = q1 (t)/(fJ,)~ao, t)( 'T) = Q2(t)/(v)iao , (49) 

where f1 = (m2/m1)i and v = (m1/1112)i. The normal
ized distance from the origin is called p = (f1~2 + Vt)2)t. 
The equations of motion become 

~" = :~(;), 1]" = ~(~), (50) 

where a prime indicates the derivative with respect to 
'T. The conservation of energy is expressed by the 
statement 

t 2+t)'2_2/p=E, (51) 

where the normalized energy 10 is given by E/Eo. The 
action integral becomes obviously 

s = J pdq = Ii Ja'2 + t),2) d'T. (52) 

The search of a simple periodic orbit follows exactly 
the classic work of Hill in the restricted 3-body 
problem. The details can be found in the textbook by 
Brouwer and Clemence.' The orbit is expanded in a 
Fourier series of (I)'T, where the normalized frequency OJ 

remains to be determined. With z = exp (iW'T), the 
symmetry of the orbit with respect to the ~ and t) 
axes leads to the expressions 

+00 
~ + it) = CXW, W = Icx j z2i

+l, 
-00 

+00 
~ - it) = cxw, w = IfJjZ2i+1, (53) 

-00 

where fJj = CX_ j _1 and these coefficients are real. The 
scale factor cx in front of wand w is necessary because 
the coefficients CXj and fJj will be obtained from a fixed 
algorithm to be described later. 

The equations of motion can be written in terms of 
the operator D = z· d/dz. Furthermore, in view of 
~ = tlX(W + w) and t) = cx(w - Iv)/2i, we introduce 

n = CX-3W- 2 [!f1(w + W)2 - !v(w - IV)2]-i, (54) 

which gives the equations of motion 

D 2w + 2 an = 0 D 2w + 2 an = 0 (55) 
aw' aw' 

with the conservation of energy 

Dw' Dw + 20 + EJCX2W 2 = O. (56) 

These equations for an electron with anisotropic mass 
tensor in a Coulomb field are entirely analogous to 
Hill's equation for the restricted 3-body problem. 

Since 0 is homogeneous in II' and IV of degree -1, 
we find immediately after multiplying the first Eq. (55) 
with wand the second Eq. (55) with 11', and after 
inserting the value of Q from (56), that 

Again, we can compare 11" D 2\i' - IV' D 2w with 
II' • D211' - W • D 2w as obtained from (55) and (54). 
They differ only by a factor (p - v)/(v + p). There
fore, we get the equation 

H' • D2\i' - W' D 2w + m(w' D211' - W' D 2w) = 0, 

(58) 

where we used m = (v - p)/(v + m) = (m1 - m2)/ 
(m1 + 1112)' 

The ratio m is small when m1 and m2 are nearly 
equal. Although this is by no means the case for 
either Si or Ge, one can easily construct an algorithm 
for obtaining II' and w from (57) and (58) which 
corresponds to a power series in m and which con
verges quite well for values of m close to its maximum 
I. This algorithm is described in a paper by Eckert and 
Eckert.8 The details are given in Appendix A. We 
obtain in this manner the coefficients CXj in (53) for 
10 = - CX 2UJ2 and any arbitrary m by numerical itera
tion, such that (57) and (58) are satisfied. Moreover, 
we determine a number y = CX3UJ2 such that Eqs. (55) 
hold in addition to (57) and (58). The value of y de
pends only on m and is always near I. The relation 
y = CX 3W 2 is the analog of Kepler's third law. 

The value of the action integral S around the 
closed orbit is given according to (52), in units of Ii, by 

f (f2 + t),2) d'T = (-E) . f d'T = -10 ~7' (59) 

The vi rial theorem has been used. It can, indeed, be 
derived from (50) and (51) that the average kinetic 
energy over a periodic orbit equals lEI. The relation 
between wand 10 follows from the two equations 
10 = _CX2W 2 and y = (1)20(3. Thus we find from (59) 
and (52) that 

f pdq = 27T1i . yl(j 10 !)! . (60) 

The values of y as a function of m are graphed in Fig. 
I. It is remarkable how close to 1 they are. If y is 
approximated by I, the action integral (60) assumes 
the classical expression of Bohr for the hydrogen atom 
provided that we use the mass mo = (m1m 2)! and the 
charge reduced by (K)!. 

In order to apply the quantization condition of the 
two preceding sections, we have to examine the 
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FIG. I. The constant y. which appears in "Kepler's third law," 
y = OJ2a.". is plotted as a function of the anisotropy parameter 
m = (ml - m.)/(ml + '"2)' The approximate eigenvalues of the 
energy are given by "Balmer's formula," E = _y2/no, in the nor
malization (48). 

stability of the periodic orbit in the (~, 'YJ) plane. This 
investigation again follows Hill's classical work on the 
motion of the perigee of the moon. The details are 
found in the textbook of Brouwer and Clemence.' 
If the periodic orbit is given by the Fourier series 
~O(-T) and 'YJO(7), we are now looking for a more 
general solution of (50) in the form 

The expressions are inserted into (50) and (51), but 
only linear terms in the deviations b~ and b'YJ will be 
kept. If we write 

t5~ = ). d~o _ a d'YJo, (;'YJ = a d~o + ). d'YJo, (62) 
d7 d7 d7 d7 

we immediately get a particular solution A = I, a = 0, 
which is of no interest. The first task is, therefore, to 
find one second-order linear differential equation in a 
alone, rather than two coupled second-order equations 
in both A and a. 

This process of elimination is performed in detail 
by Brouwer and Clemence' who use the Fourier series 
(53) in the form 

Ow = (i). - a)Dwo, bw = (iA + a)Dwo, (63) 

together with the Eqs. (55) and (56). One ends up with 
Hill's equation 

D2"P - O"P = 0, 

where "P is related to a through, 

"P = a' (-Dwo' Dwo)~, 

(64) 

(65) 

and the function () can be expressed in many equiv
alent forms. The most suitable for our purpose is 
given by 

(j = - - Dw + - Dw 3 (aD. 0D.)2 
( DwoDwo)2 ow 0 ow 0 

1 (020 2 020 _ +. -. (Dwo) - 2 -- DWoDwo 
Dwo . Dwo ow- owow 

+ a2~ (DWO)2) , (66) ow 
where the derivatives of 0 are to be evaluated for 
l\' = Wo and w = wO' If we insert the expression (54) 
for 0 with 4p~ = /l( 11'0 + lVO)2 - v( Wo - WO)2, we find 
that 

0= (4ypgDwoDwo)-1{2(/l + v)DwoDwo 

+ (v - /l)[(DWO)2 + (Dwon} 

+ (3/16yp~DwoDwo)[1 + (YPoDwoDwo)-l] 

X [(/l + v)(woDwo - woDwo) 

(67) 

The evaluation of (j as a power series in , is straight
forward. With € = - OC2W2 and Y = OC30)2, it follows 
from (56) that HI - DWoDwo) = lfypo, which gives 
the Fourier series for POl. The Fourier expansion of 
1 f DWoDwo can be obtained by a simple iteration 
scheme because the largest term jn DWoDwo is the 
constant -1. The details are described in Appendix B. 

Hill's equation (64) can, of course, be solved by the 
classical procedure described in the standard texts. 
The Fourier expansion for 0 does not converge very 
fast, however, and it is simpler to integrate (64) 
numerically to obtain the stability index in this way. 
Since (j is even in 7, we can choose the functions 
"PI = J(7) exp (fh) and "P2 = J( -7) exp (-(37) as the 
independent solutions of (64), where J(7) has 
the periodicity of (j and is normalized to 1(0) = 1. The 
solution "P = H "PI + "P2) is characterized by "P(O) = 1 
and "P'(O) = O. Therefore, if one integrates Eq. (64) 
numerically with these initial conditions, he finds that 
"P(21Tfw) = cosh (21TP/w). 

From this relation one obtains immediately the 
value of u = 21TPfw, which determines the stability of 
the orbit and the width of the peak in the density of 
states. The values of u are plotted in Fig. 2. 

The numerical solution of (64) shows that the 
periodic orbit we have obtained is unstable for all 
values of m. Moreover, the function "P goes through 0 
twice when 7 increases from 0 to. 21T/W, yielding, 
therefore, two conjugate points along the orbit. Thus 
we find, with the help of (60) for the 2-dimensional 



                                                                                                                                    

354 MARTIN C. GUTZWILLER 

u 
1.75 

1.5 

1.25 

LO 

.5 

m 
1.0 

FIG. 2. The instability exponent II is plotted as a function of the 
anisotropy parameter III = (III, - 111,)/(111, + 1112), The width of the 
peaks in the classical density of states is IIIz whereas their separation 
is 2T11z on the action scale, rather than the usual energy scale. 

case of the anisotropic Kepler problem, the quantum 
condition 

and the approximate eigenvalues of the energy 

€ = -y2/(n + !)2. 

(68) 

(69) 

In order to compare our method of approximation 
with the exact results, we have to examine the 3-
dimensional case which results from the Hamiltonian 
(46). The two Eqs. (47) have to be complemented by a 
third equation which is given by 

(70) 

The coordinate q3 is now reduced exactly as q2 by 

(71) 

which leads to the reduced equation of motion 

(72) 

where p = (1'-1;2 + vrl + V'2)~. The energy equation 

(51) contains an additional term r2, and so does the 
expression (52) for the action integral. 

Jf ~ is considered as a small deviation from the 
periodic orbit in the (~, '1/) plane, it satisfies the linear 
second-order equation 

d~' ,., .,,, 
~ + (1'-;- + l'lIT" . ~ = 0, (73) 
lIT-

where ~(T) and 'I/(T) are known functions of period 
271'/(1). The solution 'l = 'I/(T) to (73) is already known 
so that one can easily write down a second solution of 
(73). namely 

UT) = 'I/H .iT 

~fT' •. 
"/2", 1(T ) 

(74) 

This solution is characterized by '2(0) 7fI:. ° and 
~~(o) = 0, whereas 'l(O) = ° and ,;(0) 7fI:. o. Both '1 
and '2 have the periodicity 271'/"1, 

The third dimension in the anisotropic Kepler 
problem introduces two more conjugate points along 
the periodic orbit which has been studied so far. The 
orbit is neither stable nor unstable with respect to this 
degree of freedom, a fact which follows immediately 
from the cylindrical symmetry around the ~ axis. 
Thus. one arrives at the approximate eigenvalues of the 
energy 

(75) 

with n = 0, I, 2, ... for the particular periodic orbit 
in a plane through the ~ axis. The similarity with the 
Balmer formula is obvious, but one has to remember 
that the value of y depends on the periodic orbit as 
well as on the anisotropy 111. Another periodic orbit 
will generally have a different value of y in (60), and 
the denominator (n + 1)2 in (75) may have to be 
replaced by (n + 6)2, where ,) is determined by the 
stability and the number of conjugate points. 

S. COMPARISON WITH "EXPERIMENT" 

Excited states of an electron in a donor impurity 
are known from infrared spectroscopy in a number of 
cases, particularly for Li, P, As, Sb, and Bi in Si and 
Ge. 9 The effective masses at the conduction band 
minima are known from cyclotron resonance to 
0.1 ~~, and the dielectric constant from the long 
wavelength index of refraction. Experiments seem to 
have outstripped our theoretical understanding. 

The present investigation neglects both the existence 
of more than one minimum in the conduction band 
and the atomic structure of the donor impurity. It 
WOUld, therefore, be foolish to attempt a direct 
comparison of the experimental results with the 
approximate eigenvalues of the energy (75). Since we 
are studying the use of classical mechanics in the 
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solution of Schrodinger's equation, we shall compare 
our results with the recent work of Faulkner ,4 who has 
obtained approximate eigenstates for the quantum 
mechanical Hamiltonian (46) by using finite linear 
combinations of hydrogen wavefunctions. In this 
manner he gets approximate eigenvalues of the energy 
from the ground state up to the sixth atomic shell. 

The Hamiltonian (46) has cylindrical symmetry 
around the I axis so that its eigenstates can be 
characterized by their angular momentum around the 
I axis. Since our periodic orbit lies in a plane through 
the 1 axis, our approximate energies (75) correspond 
to eigenstates with zero angular momentum around 
the I axis. The Hamiltonian (46) has also reflection 
symmetry with respect to the (2, 3) plane so that its 
eigenstates can be further characterized by their 
reflection properties. There are even and odd states 
with respect to the reflection on the (2,3) plane, but 
our approximation does not distinguish between them. 

Thus, we are left with the set of states which Faulk
ner calls IS, 2S, 2Po, 3S, 3Po, 3Do, 4S, 4Po, 4Do, 
4Fo, etc., to make a comparison. These designations 
are unambiguous for small anisotropy, i.e:, for small 
values of m, because the anisotropy causes only small 
admixtures to the corresponding pure hydrogen states. 
Actually, a first-order perturbation theory gives the 
splitting of the hydrogen levels due to the anisotropy, 
as will be indicated presently. Ifwe use the normaliza
tion (48), i.e., the Hamiltonian which results from (51), 
the perturbation is simply the deviation of lip from 
(~2 + 'Yf2 + ~2)-!. In terms of m = (ml - m2)/(ml + 
m2), we obviously have It = 1 - m + . .. and 
v = 1 + m + .... Thus, we find that 

p-l = (~2 + 'Yf2 + ~2)-! 
X [1 + lm(cos2 f} - sin2 B) + ... J, (76) 

where f} is the angle with the g axis. The s~cond term 
on the right-hand side is the perturbation. Its matrix 
elements are small for two hydrogen wavefunctions of 
same principal quantum number n, but different 
azimuthal quantum number I. Thus, there is no need 
for degenerate perturbation theory, and Ofle finds the 
eigenvalues of the energy to first order, 

€ = - ~2(] + (21 _ 1~~21 + 3) + ··l (77) 

in the normalization (48). 
This result has to be contrasted with a calculation 

of our periodic orbit to lowest order in m. Equations 
(57) and (58) give immediately the approximation 

w = z(l + imz2 - i'4;mz2 + ... ) (78) 

for € = _OC2())2. The number y equals 1 with correc
tions of order m2• For completeness sake, we list 

() = 1 - im(z2 + Z-2) + . . . (79) 

to lowest order in m, which is to be inserted into Hill's 
equation (64). It follows that the stability exponent is 
given by 

u = !m7T + ... , (80) 

with the help of Hill's determinant. 
To lowest order in m, we find, therefore, the 

approximate energies € = -l/n2 with n = 1, 2, .... 
This last formula coincides with (77) in the limit of 
very large I. It is now conjectured that the energies 
(75) always correspond to an eigenstate with the 
largest possible expectation value of the azimuthal 
angular momentum. In Faulkner's nomenclature, the 
series of energies (75) corresponds to the levels IS, 
2Po, 3Do, 4Fo, SGo, 6Ho, where the lower index 0 
indicates the vanishing magnetic quantum number. 
The periodic orbits which were obtained in the pre
ceding section are simply closed, symmetric curves in 
a plane through the ~ axis and never get close to the 
origin. A periodic orbit of low average angular mo
mentum, however, would either be asymmetric or come 
close to the origin. 

In order to compare the numerical results of 
Faulkner with formula (75), it is necessary to give them 
a somewhat different interpretation. It is clear from 
(77) that for a given n the S level is always highest 
whereas the P level is lowest, and the other levels have 
increasing energies with increasing I. This level scheme 
is intuitively obvious from the expression (51) for the 
energy because the potential energy - 21 p is higher at 
some point on the r; axis than it is at a point 'on the 
~ axis which is at the same distance from the origin. 
An S state tends to have the same amplitude along 
the ~ and 'Yfaxes, while a Po state has a vanishing 
amplitude along the 'Yfaxis because it is an odd 
function of ~. The states with larger average angular 
momentum do not avoid the r; axis as well as the Po 
state, but they surely have most of their amplitude 
along the ~ axis. 

Unfortunately, this simple argument was not 
recognized by Faulkner, and he was, therefore, led to 
mislabel his results, although his numbers seem 
correct. A more subtle and, in a certain sense, arbi
trary consideration has to do with the crossing of levels. 
The formula (77) suggests that the Po level for some 
value of n might cross the S level for a lower value of 
n as m increases. Since Po is odd and S is even with 
respect to reflection on the (1], ~) plane, there will be a 
real crossing. If m increases further, however, it might 
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happen that even the Do level tries to drop below the 
S level which belongs to a smaller value of n. The two 
curves will not cross on a plot of their energy versus m. 
Rather, the appearance of the wavefunction will 
change continuously from a Do type into an S type 
and vice versa. If this change occurs fairly quickly on 
the m scale, it would appear ~tirely reasonable to 
change the label accordingly, although the point at 
which the labels are switched is necessarily somewhat 
arbitrary. 

The results of Faulkner's calculations for Si and Ge 
are presented in Table I together with the energies 
resulting from (75). Our interpretation of the levels is 
given in the left-hand column whereas Faulkner's 
labels are given to the right of his numerical results. 
The masses are ml = 0.916 me and m2 = 0.1905 me 
with m = 0.656 and K = 11.4 for Si, and ml = 
1.588 me and m2 = 0.0815 me with m = 0.899 and 
K = 15.36 for Ge, where me is the mass of the free 
electron. Notice that our approximate values for Si 
are always above the energy of the level with the 
largest angular momentum, but below the S level. In 
the case of Ge this rule seems to hold only for the 
higher levels n = 4, 5, and 6, but not for n = 2 and 3. 
Of course, Ge is further away from the simple hydro
gen model than Si so that both our interpretation of 

TABLE 1. The results of Faulkner's calculations based on 
expanding the electron wavefunctions around the donor 
impurity into a sum of hydrogenlike terms, are compared with 
the quasiclassical approximation. Column 1 gives our interpreta
tion of the various levels. Columns 2 and S give our approximate 
results for certain special levels, while columns 3 and 6 give 
Faulkner'S results for all levels. Columns 4 and 7 give Faulkner's 

designations of these levels for silicon and germanium. 

Level 

Is 
2po 
2s 
3po 
3do 
3s 
4po 
4do 
4j~ 
4s 
5po 
5do 
5h 
5go 
Ss 
6po 
6do 
6j~ 
6go 
6ho 
6s 

36.81 
9.20 

4.09 

2.30 

1.47 

1.02 

Si 

31.27 
11.51 
8.83 
S.48 
4.7S 
3.7S 
3.33 
2.85 
2.33 
2.11 
2.23 
1.87 
1.62 
1.S2 
1.38 
l.S2 

1.20 

1.10 

IS 
2Po 
2S 
3Po 
3S 
3D. 
4PIl 

4S 
4Fo 
4Do 
SPo 
SS 
SF 
SDo 
SG 
6Po 

6Fo 

6Ho 

11.92 
2.98 

1.32 

0.7S 

0.48 

0.33 

Oe 

9.81 
4.74 
3.S2 
2.56 
2.01 
1.33 
1.67 
1.17 
0.80 
0.72 
1.16 
0.87 
0.S5 
0.61 
0.S3 
0.84 

0.61 

0.40 

IS 
2Po 
2S 
3Po 
3S 
3Do 
4Po 
4S 
SFo 
SS 
4Fo 
4Do 
6Fo 
SDo 
SGo 
5Po 

6Po 

6Ho 

levels in Ge and Faulkner's calculations become more 
questionable. 

The anisotropic Kepler problem was discussed only 
to illustrate the use of periodic orbits in approximating 
the eigenvalues of a nonseparable Hamiltonian. 
Furthermore, we have considered only a type of 
periodic orbits which is sufficiently close to a circle 
and allows the use of methods from lunar theory for 
its computation. Ifwe want to find the classical analog 
of the levels in Table I, where the columns two and 
five are blank, we have to search for other types of 
periodic orbits in the (~, r;) plane. These will have 
more complicated shapes; in particular, these orbits 
will intersect themselves and may lack any symmetry 
with respect to the ~ axis or the 'fJ axis. Hill's method 
for finding periodic orbits can probably not be applied 
to them, and one has to rely on the more general 
methods of Poincare and his successors. Such an in
vestigation will concentrate mainly on finding certain 
classes of periodic orbits and characterizing them in 
terms of their topology and stability. But it should be 
kept in mind that these periodic orbits are eventually 
to be interpreted in terms of energy levels of a corre
sponding SchrOdinger equation. The above example 
suggests that such an interpretation yields not only a 
simple approximation to the eigenvalues of the energy, 
but provides a better understanding of the solutions 
of SchrOdinger's equation. 
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APPENDIX A 

For € = -!X2W 2 and m = 0, Eqs. (57) and (58) 
have the trivial solution w = z, i.e., !xo = 1 and !Xj = 0 
for j :F O. This solution will be taken as the zero-order 
approximation for w when m :F O. The solution of (57) 
and (58) will be generated by an iteration procedure 
which uses only the result of the preceding step. Thus, 
let us assume that the nth iteration has given the power 
series w. The (n + l)th iteration will then provide a 
correction !5w and the new approximation w + !5w. 
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Since bw is small (in some sense) compared to 11', 

we neglect all nonlinear terms in bw when we insert 
w + bw into (57) and (58). This would leave terms of 
the type iv' bw, Jr' bw, etc. However, we shall go one 
step further in the effort to simplify the determination 
of bw. In all terms of the type wbll', Ifbw, etc., we shall 
replace If by z, its zero-order approximation, and w 
by ri. Moreover, we shall neglect all terms where bll' 
or bw gets multiplied by m. 

If we use the power series U and V defined by 

bw=zU, bW=Z-IV, (AI) 

the equations to be solved at each step of the iteration 
become 

(D2 + D + I)U + (D2 - D + I)V 

= -W' D2w - II" D2w - DII" Dw - EI(1.2(J)2, 

(A2) 
_(D2 + 2D)U + (D2 - 2D)V 

= -It" D2w + W' D211' - m(w· D211' - IV' Dw). 

(A3) 

The right-hand sides are just the "residues" from 
Eqs. (57) and (58), i.e., the quantities by which II' and 
w fail to satisfy the Eqs. (57) and (58). 

The functions U and V are power series in z whose 
general form can be obtained from (AI) and (53). 
Thus, we can write 

+ifJ +'" 
U = ~>ljZ2i, V = Lv j z2j

, (A4) 
-00 -00 

with Vi = U_j • Equations (A2) and (A3) become 

(4/ + 2j + I)u j + (4/- 2j + I)v j = r j , (AS) 

-(~j2 + 4j)uj + (4P - 4j)vj = Sj' (A6) 

if the coefficients of eq ual powers in z are matched and 
if the right-hand sides of (A2) and (A3) are written as 
2 rjz2j and L SjZ2i. It can easily be checked that rj = 
r _j and Sj = -S_j' so that the Eqs. (A5) and (A6) are 
compatible with the relation Vj = u-i . The deter
minant of the coefficients of Uj and Vj is given by 
8j2(4j2 - 1). 

The evaluation of the residues involves no more 
than summation, multiplication, and differentiation 
of power series. All these operations are easily 
programmed on a computer. Beyond a certain value of 
m, the convergence of the iteration scheme is not 
monotonic, but oscillatory and very slow. It is enough 
to take w + (Jw/2 as the new approximation at every 
fifth iteration, say, to prevent this oscillatory approach 
to the final result. 

The solution of (57) and (58) implies the existence 
of a potential like n as given by (54) up to an arbitrary 
factor. This factor is fixed by requiring either (55) or 
(56) to be satisfied at one particular value of T, e.g., 
at T = 0 which implies z = I. If we abbreviate 
y = (1)2 7.3, we find from (56) that 

1. = H,u)l(1 - DwDw)(w + W)IZ~I' (A7) 
Y 

where we have put E = _(1.2(1)2 all along. 

APPENDIX B 

After II' has been obtained with the help of the 
iteration procedure of Appendix A, the periodic 
function () has to be evaluated from the formula (67). 
Since lip follows from the conservation of energy, () 
could be calculated using only the summation, 
multiplication, and differentiation of power series if 
it were not for the division by DWoDwo. This last 
quantity is essentially the kinetic energy, and remains, 
therefore, positive for all values of z on the unit circle. 

DI1'oDIVo contains only the even powers of z, and its 
coefficients are symmetric; i.e., if we write 

(Bl) 

we find that Wi = W-i and these coefficients are real. 
Moreover, Wo = 1 because the average kinetic energy 
equals -EI(1.2(J)2 according to (56) and the virial 
theorem. For small values of m the coefficients Wj 

are small for j =F O. Therefore, one expects that the 
power series expansion of F = 11 W has small coeffi
cients except for the term j = O. 

The equation F' W = 1 is then solved by iteration 
exactly as the Eqs. (57) and (58) were solved in 
Appendix A. The zero-order approximation for F is 1. 
Again we assume that the nth iteration has yielded F, 
and we use the (n + 1 )th iteration to obtain a correc
tion bF. But, in evaluating (F + bF)W = 1, we 
replace bF· W simply by bF as if W were equal to 1. 
Thus we find the correction bF = I - FW and the 
input F + bF for the next iteration. 

This procedure works only if W is close to 1. If 
such is not the case, however, the power series W has 
to be inverted in steps. Thus, let us call 

W(I) = 1 - (I/L) + (//L)W, (B2) 

where L is some positive integer and 1 ~ I ~ L. If Lis 
large enough, WO) satisfies the assumption of the 
preceding paragraph, and we can find F(ll to satisfy 
the equation F(ll • W(1) = I. Now, suppose that we 
have found F(l) to satisfy the equation pel) Well = 1 
and that we have an nth approximation F(l) + (JF 
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toward F(!+!) which is required to satisfy F(Hl) • 

W(Hll = 1. The (n + I)th approximation to FU+!) 

would be given by F(l) + F + of, where we try to 
satisfy 

(F(I) + F + of)WCl+1) 

= (F(l) + F)W(Hl) + of· W<!l + of(W(ll- 1) = l. 

But, we now assume bF· W(1) to be small, and we 
use our knowledge of F(!) to write 

of = F(l)[1 - (Fw + F)W(I+1)]. (83) 

In this manner FCl+1) is found by iteration, and 
ultimately so is F(L). 
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Scattering by a spherical potential is discussed in all dimensions by one formulation using the partial
wave expansion method. The optical theorem relating the total scattering cross section (J to the forward 
scattering amplitude f(O) is derived. 

We wish to derive a formula relating the total 
scattering cross section to the forward-scattering 
amplitude which holds in all dimensions. The pro
cedure is to use Gegenbauer's expansion! of a plane 
wave in N dimensions in terms of partial waves appro
priate for the space under consideration. This allows 
us to treat scattering in all dimensions on equal foot
ing, without resort to special formulations, and reveals 
the similarities of wave motion in all dimensions. 

The stationary-state Schrodinger equation is 

The wave equation (I) is separable, and the solutions 
are partial waves of the form !n(x)C~(cos 0), where 
!n(x) is the radial solution and C~(cos 0) is the N
dimensional spherical harmonic of Gegenbauer, in 
which n is the degree of the polynomial and IX = 
iN - 1. 

These harmonics are defined by the generating 
function2 •3 

<Y.) 

(I - 2h cos 0 + h2)-a = 1 hnc~(cos 0) (3) 
11=0 

[~ + k2 - U(x)]tp = 0, (1) and satisfy the differential equation 

where ~ is the Laplacian operator in N dimensions, 
k2 = (2m/1i2)E, E is the energy, m is the mass of the 
particle, and U(x) = (2m/1i2)V(x), where Vex) is the 
potential and x is the length of the N-dimensional 
position vector x. It is thus assumed that the potential 
is spherically symmetric. We are interested in the 
scattering of a wave incident along the z axis, and tp 

will depend on x and 0 where z = x cos O. The 
Laplacian takes the form 

02 N - IoN - 2 0 1 02 

~ = - + -- - + -- cot 0 - + - -. (2) 
ox2 x ox x 2 00 X

2 002 

(.£ + (N - 2) cot 0 ~ 
d0 2 df} 

+ n(N + n - 2»)C~(COS 0) = O. (4) 

By substituting (4) and (2) into (1) we obtain the radial 
equation 

(~ + 2ex: + 1 .E.- + k 2 

dx2 
X dx 

- n(n + 2ex:)x-2 - U(x) )fn(X) = O. (5) 
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~ = - + -- - + -- cot 0 - + - -. (2) 
ox2 x ox x 2 00 X

2 002 

(.£ + (N - 2) cot 0 ~ 
d0 2 df} 

+ n(N + n - 2»)C~(COS 0) = O. (4) 

By substituting (4) and (2) into (1) we obtain the radial 
equation 

(~ + 2ex: + 1 .E.- + k 2 

dx2 
X dx 

- n(n + 2ex:)x-2 - U(x) )fn(X) = O. (5) 
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The substitution !.,(x) = x-a~lI(x) gives 

( 
tP I d k" ( ).... U(»).I.. () 0 -.) + - - + .- - II + 0( -:c- - x '1'" X = . 
c/x- X £Ix 

(6) 
The asymptotic solution of (6) is 

~II(X) "" Z,,! .(kx), (7) 

where Z is a general Bessel function. 
The solution 1p which is of interest must consist of 

an incident wave exp (ikx cos 0) and a scattered 
wave. Now, a plane wave can be resolved into partial 
waves by the Gegenbauer expansion formula: 

00 

eik",cnsO = 2ar(lX) 2 (IX + /1)i"(kx)-aJIlI_a(kx)C~(cos 0), 
n=O 

(S) 

and, since 1p must have the asymptotic behavior of a 
plane wave plus outgoing partial waves, we can write 
the asymptotic formula 

OCJ 

1p'-"" 2<lf'(1X) 2 (IX + Il)i"(kx)-ac~(cos 0) 
11=0 

X Hei<l"h~,l~.(kx) + e-i6"h~,21).(kx»)eiO,., (9) 

where b" is the phase shift for the nth partial wave and 
h~1J and h~2) are Hankel's functions of the first and 
second kind. fn writing (9),the well-known asymptotic 
behavior of Bessel functions was used, namely,4 

J v(x),-.., (2111'x)~ cos (x - ~V11' - 111'), 

h~U(x)'-'" (2111'x)lei(x-~"-I~), 

h~2)(X)'-'" (2/11'x)!e-;(x-!vr.-{lTl. 
(10) 

By subtracting (S) from (9) we obtain the asymp
totic behavior of the scattered wave 1ps, namely, 

1p.,'-'" 2'r(lX) ~ (IX + n)i"(kx)-a(2/11'kx)~-
n=O 

X C~(cos 0)ei (kx-!(n+a)"-lu)i(e2i<ln - t) 

== i(ix)-(a+!)eikXj(O), (11) 

which also defines the scattering amplitude f(O). 
The optical theorem relates the total cross section 

(j = S If(0)12 dO. to the forward scattering amplitude 
f(O). The cross section (J' can be obtained from (II) by 
remembering that3 

f'sin2
• (}C:"(cos O)C~(cos 0) dO 

77T(21X + n) b (12) 
22a- 1(1X + n)n! [r(oc)]2 m,fI 

and that in the integration over solid angle the contri
bution of the azimuthal angles (~l' ~2' ... , ~N-2) 

gives the factor U." where 

12", = l11'a! !/I'(IX + n, IX ~ , 

= I, 

and thus we obtain 

0( < , 

OCJ S11"1-~(1X + n)r(21X + /1) .. ) 
(J' = 2 .), , SIl1- ()II' 

II~O II! k-" II (0( + D 
For 0 = 0, Eq. (3) gives 

C~(I) = (II !)-11'(20( + n)/I'(2oc), 

which enables us to deduce from Eq. (II) that 

I I. l'(1X) ( . I) Imj(O) = 2,1- 211'-2 -- k- ,1 2 

1'(2oc) 

( 13) 

(14) 

( 15) 

~(IX + II)l'(21X + /1)(sin2 bJ ( ) x.:.. . 16 
"ceO /1 ! 

By comparing (14) and (16) we obtain the optical 
theorem: 

(J' = 811'·!1(2k)-(a!p[r(20()/['(1X)][1'(1X + m-1[lmj(0)]. 

( 17) 

fn three dimensions, 0( = -~, and we have the well
known result (J' = (411'/k) [mf(O). In two dimensions 
IX = 0 and 

I 

(J'(N = 2) = 2(211'/k)2[lmj(O)]. (IS) 

In one dimension rJ. = -~ and 

lim __ 1'---,--(2_0(.:...)_ 
,-->-~ r(IX)r(1X +D 

=Iim 
2IXr(21X)(rJ. +n 

a-->-k 2IXr(oc)(oc + nr(1X + D 
= ur(21X + 2)/I'( IX + t )][r( IX +})]-l 
= 111'-k 

(which also could have been foreseen from the duplica
tion formula for the gamma function), and thus we 
obtain 

(J' = 2Imf(0), N = I, (19) 

a result which is equivalent to that obtained by 
Eberly,5 since our f(O) as defined by Eq. (II) is -i 
times the f(O) used by Eberly. 

Other applications of the Gegenbauer expansion 
formula have been given elsewhere.6 

1 G. N. Watson, A Treatise on the Theory of Bessel Fllnctions 
(Cambridge V.P., Cambridge, 1966). 

• Reference 1, o. 129. 
3 A. Sommerfeid. Partial Differential Equations in Physics (Aca-

demic, New York, 1949), Appendix IV. 
• Reference 1, p. 198. 
5 J. H. Eberly, Am. J. Phys. 33, 771 (1965). 
6 I. Adawi, Phys. Rev. 146, 379 (1966); Phys. Letters 26A, 317 

(1968). 
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In t~is work, a definition ?f agreement between a physical theory and experiment, proposed in earlier 
work, IS extended to be relatIve to T where Tis Zermelo-Fraenkel set theory. The main aim of this work is 
to show that this definition, unlike that of earlier work, is sufficiently powerful to include relations 
between limit properties of empirical outcome sequences and expectation values obtained from the 
physical theory. We also extend, to the more powerful T, some earlier results on randomness and the 
empirical determinability of the probability measure which a physical theory assigns to the outcome set of 
an infinite sequence of experiments. 

I. INTRODUCTION 

In this paper, the program begun in an earlier paper, 1 

hereafter referred to as I, is continued. Basically the 
aim of the program is to understand and describe the 
dynamics of the knowledge acquisition process, the im
portance of which to physics has been stressed by 
several authors.2-4 If one believes, as this author 
does, that physical reality, far from being independent 
of epistemology, is, in essence, defined by the basic 
aspects of the process, then a study of this process 
should aid in understanding some basic aspects of 
physics (and mathematics). 

The goal of the epistemological process which is of 
relevance here is the construction of a comprehensive 
physical theory as an interpreted formal axiomatized 
system which is valid or "explains the physical world." 
An understanding of the process clearly requires that 
one have some reasonably exact idea of what it means 
for a physical theory to agree with experiment. It is 
with this problem that J and this paper are mainly 
concerned. 

In I an exact definition of this concept as a necessary 
condition of validity for a large class of physical 
theories was proposed and discussed. A physical 
theory was considered to correspond to a mapping 
U with domain Du in the set of all infinite sequences 
Qst, of instructions for carrying out infinite sequences 
of single measurements, and with range in the class of 
probability measures defined oh the usual a-algebra 
A(Q) of subsets of Q. The set of all infinite sequences 
of natural numbers is Q. In essence the definition 
stated that, for each (Qst) in the domain of a physical 
theory, there is a (in general Qst-dependent) class of 
properties which "PQst, the infinite outcome sequence 
of natural numbers obtained by actually carrying out 
(Qst), must have if the theory is to agree with experi
ment. For each (Qst) the class of properties was 
taken to be a subclass of alI those properties of ele
ments of Q which are expressible by some formula in 

H. H was taken to be a certain extension of the 
formulas of the formal language of elementary analysis 
or second-order arithmetic.s 

In I it was seen that, although this definition in
cluded much of the intuitive meaning of agreement 
between a physical theory and experiment, there were 
some important aspects left out. In particular, the 
definition did not include any relation between the 
limit mean of an empirical outcome sequence and an 
expectation value given by the physical theory. It was 
noted that the reason for this was that H was not 
strong enough to include the necessary probability 
theoretic statements. 

The main purpose of this work is to remedy this 
defect. In essence this is done by replacing H in the 
definitions of I by 'T, where 'T is basic Zermelo-Fraenkel 
set theory.6-8 The change to set theory requires some 
changes in the definitions and procedures over those 
used in I, but does not appear to cause any difficulty. 

Section V contains the basic results of this work. In 
particular, Metatheorem 6 states that if a physical 
theory U 'T-agrees with experiment [Eqs. (12) and 
(38)], then for each (Qst) in Du there are different con
ditions which the measure U(Qst) must satisfy if 
different relations between 'T-definable limit properties 
of sequences and general expectations computed from 
theory are to hold for the outcome sequence "PQst. 
The essence of the meta theorem is an ergodic theorem 
and related aspects, as the conditions on U(Qst) are 
given in terms of the various ergodic, etc., properties 
of T-definable transformations. For example, a partic
ular case covered by the metatheorem is the follow
ing: If U T-agrees with experiment, then for any 
(Qst) in D u , if the one-sided shift operator Eg. (19) 
is ergodic and measure preserving with respect to the 
measure U(Qst) , M"PQst = Ln nU(Qst)Eno · M"PQst 
is the limit mean of "PQst and 

Eno = [cp I cp(O) = n]. 

360 
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This metatheorem (and Metatheorems 4 and 5) 
show that Eqs. (12) and (38) include those relations 
between limit properties of sequences and theoretical 
expectations which were left out of the definition 
given before.1 Thus, at least for the type of theories 
discussed here, Eqs. (12) and (38), with T equal to 
ZF set theory, appear to carry the 'full intuitive mean
ing of agreement between theory and experiment. 

Metatheorems 7 and 8 extend the corresponding 
results of I. Metatheorem 7 states that if U T-agrees 
with experiment, then, for all (Qst) in the domain of 
U, if U(Qst) is a product measure, the outcome 
sequence obtained by doing Qst is T-random [Eq. 
(14)]. Metatheorem 8 gives sufficient conditions for the 
measure U(Qst) to be empirically determinable. The 
concept of empirical determinability of U(Qst) is 
defined by Eq. (53). 

Sections II-IV give the mathematical background 
necessary for an understanding of Sec. V. Section II 
reviews the formal linguistic framework by first giving 
a standard axiomatization of ZF set theory.6.7 The 
method of extension of a formal theory by definitions,6 
which gets much implicit use, is reviewed. If desired, 
this section can be skipped on first reading as the 
material, although fundamental, is, for the most 
part, used implicitly only. 

Section III extends the definition given in I for the 
statement E(T, P, <p) [Eq. (12)]. This statement, which 
is central to the whole work, says in effect that 
all T-definable properties of sequences (where the 
probability measure P may occur in the defining rela
tion) which hold for P almost all sequences hold for 
the sequence <po Metatheorems 1-3 give some prop
erties of this definition. Metatheorem 1 says the 
definition is not empty; for any P there exist sequences 
such that E( T, P, 'P) holds. Metatheorem 3 says that 
for all nontrivial measures P if E(T, P, <p) holds, then 
<p is not T-definable. Also the definition of randomness 
given in I is extended to the definition of E(T, P, <p) 
given here. 

Section IV develops the relevant probability theo
retic background and gives the metatheorems necessary 
to prove Metatheorem 6. First the standard ergodic 
and indecomposability theorems of probability theory 
are extended to include transformations from one 
measure space to another. Then it is shown (Meta
theorem 4) that statements which relate limit prop
erties of sequences to expectations correspond to 
formulas in T. Furthermore, by the ergodic, etc., 
theorems, such statements, for T-definable random 
variables and transformations, are, under certain 
conditions, true P almost everywhere. Thus if E(T, 
P, 1p) holds, they must be true for 1p. This is the content 
of Metatheorem 5. 

Finally, some general comments are in order. In this 
work the distinction is made between theorems as 
statements formalizable and provable within set 
theory and metatheorems which include semantic 
or metalinguistic aspects outside of formal set theory. 
Considerations of whether or not the metatheorems 
can be converted into theorems of T are outside the 
scope of this work. 

As in I, the position taken here is that we are outside 
of any particular physical theory and are considering 
some aspects of the general process of constructing a 
valid physical theory. This is one reason why the dis
cussion is not carried out in quantum mechanics. 
Furthermore, as was discussed in I, it is an open 
question whether or not quantum mechanics is a 
theory of the type U as discussed here. In particular, 
there seem to be many problems in attempting to dis
cuss correlations between single measurements within 
quantum mechanics. Any theory U which, for each 
appropriate (Qst), defines a measure U(Qst) on A(O) 
is a theory which automatically describes correlations 
between single measurements. 1 

II. FORMAL LINGUISTIC FRAMEWORK 

The formal linguistic framework for this work is 
that of Zermelo-Fraenkel set theory, here denoted by 
T. The symbols of the language, L(T), of T consist of 
E (membership) as the one primitive predicate symbol, 
x,y, z, ... as set variables, and the logical symbols 
v (or), A (and), 1 (not), =? (implies), 3 (there exists), 
'if (for all), and = as the equality predicate symbol. 

The formulas of L(T) are the smallest class of ex
pressions closed under the logical operations which 
contain the atomic formulas. That is, (1) u E v and 
u = v are formulas where u and v are any set variables, 
and (2) lB, B VB', B A B', B =? B', 3uB, and VuB 
are formulas if Band B' are formulas and u is any set 
variable. The list of logical connectives used here is 
convenient even though there is redundancy. For 
example, B A B' == l(lB V lB'), B =? B' == lB V B', 
and VuB == l3ulB. In what follows,free use is made of 
parentheses and brackets in order to increase the 
readability of the formulas. They are not necessary, 
though, and can be removed by an appropriate re
ordering of the symbols in the formulas. 

There are several equivalent axiomatizations of 
basic ZF set theory. We give one of them6 here. 

(1) The axiom of extensionality: 

VxVy'v'z «z EX<=> Z E y) => x = y). 

This says two sets are equal if they have the same 
members (A <=> B is short for A=> B A B =? A). This 
axiom also says that a set is determined by its mem
bers. 
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(2) The regularity axiom: 

V x [3y (y EX) => 3y (y E X II V Z (z EX=> lz E y»J. 

This says that if x is not empty, then it contains a 
minimal element. That is, it contains an element y such 
that x and y have no members in common. 

(3) The subset axiom schema: 

V yz3V x (x E Z <=> X E Y II A). 

This is really a statement which stands for an infinite 
number of axioms, one for each formula A of L(T) 
which does not contain y and Z free. This says that, for 
each formula A and each set y, there is a set z which is 
the set of all and only those elements of y for which A 
holds. 

(4) The replacement axiom schema: 

[Vx3zVy (A <=> Y E z)] 

=> Vw3zVy [3x (x E II' II A) => yEO zJ. 

Like the subset axiom schema, this is equivalent to an 
infinite number of axioms, one for each formula A 
which does not contain z and I\' free. To see what this 
means, let A be a formula with x and y free. Then this 
says that if there exists a set z'" containing all and only 
those elements y for which A(x,y) holds, then for 
each w there exists a set Zw containing all elements y 
such that A(x,y) holds for some x in 1\'. 

(5) The power set axiom: 

Vx3yVz (z s; x=> z EO y), 

This says that for any set x there is a set y (called the 
power set of x) containing as elements all subsets of x. 
Here z s; x is short for VIV (IV E Z => 11' EX). 

(6) The axiom of infinity: 

3x {0 E X II V y [y E X 

=> 3w (V Z (z E IV <=> z E y V z = y) II lI" E x)J}. 

This says that there exists a set x containing an in
finite number of elements. That is, it contains the 
empty set 0, and for all y, if it contains y, it contains 
the successor set of y. 0 is defined by 3xVy (ly EX). 

(7) The axiom of choice7 : 

"Ix [VyVz Iy E x II z E x III (z = y) II 1 (y = 0) 

=> y (J z = 0 J => 3wVy]y E x =>3z (z E y<=>z E IV) 

II VvVu (u E Y II U E IV II V E Y II L' E 1\' => U = v). 

This axiom says that for each set x whose members are 
pairwise disjoint, there exists a set It' containing 
exactly one element from each member of x. Here 
y (J z denotes the set theoretic intersection of x and y. 

Besides these nonlogical axioms there are the logical 
axioms and rules of deduction. These are common to 
every formal system and can be given in anyone of 
several equivalent forms.6 The logical axioms include 
B V lB for any formula B of L(T), U = U for any 
variable U, etc. Tn one form, the rules of deduction 
include: If A is a theorem and A => B is a theorem, 
then B is a theorem. 

One now defines a theorem of set theory as a 
provable formula. Equivalently, the set of theorems is 
the smallest set of formulas of L(T) which contains all 
the axioms and is closed under the logical deduction 
operations. 

The axioms as presented contain some defined 
symbols such as 0 , S , etc., which are not in the orig
inal language. This is an example of the extension of 
L(T) and T by definitions.6 Since this process is given 
much implicit use in the following, it is worthwhile to 
give a brief review, 

An unary predicate symbol R is added to L(T) 
along with 

Vx [R(x) <=> A(x») (I) 

as the defining axiom for R, where A(x) is a formula 
of L( T) which defines R(x). 

A symbol S is added as the name of a set along with 
the defining relation 

"Ix (x E S <=> A (x» (2) 

as the defining axiom for S provided that 

3zVx (x E Z <=> A (x» (3) 

is a theorem of T. 

An unary function symbol I is added along with 

VxVy [[(x) =)' <=> A(x,y)] (4) 

as a defining relation with A(x, y) a formula of L(T) 
provided tha"t 

VxVy [A(x,y) II A(x,y') => y = .v'], (5) 

3x3yA{x,y), (6) 

3zVx [x E z<=>3yA{x, y)] 

113zVy [YEz-¢:>3xA{x,y)] (7) 

are theorems of T. Conditions (5) and (6) ensure that 
I is a function with a nonempty domain, and condition 
(7) ensures thatl, as a class of ordered pairs, is a set by 
requiring that the domain and range of I be sets. 
These defining conditions have obvious extensions to 
n-ary relation and function symbols. 
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As an example, suppose one wants to add to L(7') 
the formula N(x), which says that x is a natural num
ber. One then adds the predicate symbol N to L(7') 
along with the defining axiom -

!i(x) <:? Tran (x) A Vy (y EX=> Tran 0') A 1 Inf (x», 

(8) 

where 

Tran (x) == VyVz (yEx A ZEY=>ZEX) (9) 

and Inf (x) is the axiom of infinity. 
One can further add N as a symbol for the set N of 

all natural numbers to 7', along with the defining 
axiom 

x (x E N <:? N(x», (10) 

provided that 3zVx (x E Z <:? N(x» is a theorem of 7'. 

The proof of this is carried out by a standard con
struction6 in which one shows that there exists a set 
which is a limit ordinal and that N (or w) is the first 
limit ordinal. 

The reason the existence proofs, expressions (3) 
and (7), are necessary is that many formulas of 7' define 
classes which are not sets. Thus one must prove that 
the class of sets with the property defined by the 
formula in question is a set before a name of a class 
can be admitted as a name of a set. 

These extensions by definitions do not make any 
essential change in L(7') or 7'. This is shown by the fact 
that if 7" is an extension of 7' by definitions, then~ for 
each formula A' in the extended language L (7"), A' is 
a theorem of 7" if and only if A is a theorem of 7' where 
A is a translation of A' back to the original language 
L(7'). Of course, A == A' if A' contains no defined 
symbols. 

It is important to keep in mind that formulas of 
L(7') are meaningless strings of symbols which are 
given meaning by interpretation in a model of 7'. A 
model of 7' is a structure for L(7') in which all the 
axioms are valid. A structure for L(7') is a universe of 
elements Z, together with functions and relations de
fined on the universe and which serve as interpreta
tions of the function and relation symbols in L(7'). 
Similarly, the variables and constants, or names of 
sets, are mapped into Z. In any structure, each set 
name has a fixed interpretation whereas the meaning 
of a variable can range over all elements of Z. A for
mula is valid in a structure if it has no free variables 
and is true, or if it is true for all interpretations of the 
free variables which it may have. 

From now on definitions of various mathematical 
objects will be introduced without any reference to 
their formal definitions in 7'. This is the procedure one 

follows when one builds up mathematics in informal 
set theory,6-S which is the standard model of 7'. Of 
course, one must be careful to ensure that every in
formal definition can be replaced by a formal defini
tion in L(7'). Thus, if desired, one can introduce, by the 
extension process just described, a name and de
fining axiom for the defined object into L(7'). 

Furthermore, the formal logical and relation sym
bols of L(7') will also be used to denote their informal, 
meaningful counterparts. For example, E and = will 
also be used to denote the respective meaningful 
membership and equality relations. This identification 
of formal objects of L(7') and informal objects should 
cause no confusion since it will always be clear from 
context whether the discussion is about informal 
objects or formal objects of 7'. 

III. E(-T, P, 11') 

Some definitions are now in order. Let N denote the 
set of natural numbers [with name N, Eq. (10)] and 
i,j, k, i', ... denote informal variables which range 
over N. The natural numbers of N are given by 0, 
I, ... , n, I, m, ... , with 0 = 0, I = {0}, 2 = {0, 
{0 }}, etc., with 0 denoting the empty set. Let 0 be the 
set of all infinite sequences of natural numbers and 
gy, (J, tp, ..• be informal variables for such sequences. 
Let E, F, ... be informal variables ranging over all 
subsets of O. For each n and I, Enl is the subset of 0 
defined by 

Vgy (gy E Enl <:? gy(l) = n). (11) 

(Equivalently one can write Enl == [gy I gy(l) = n].) 
Let R denote the set of real numbers. The operations 

+ (plus) and x (times) are defined on N, R, and 0 in 
the usual manner.s Thus (gy + (J)(j) = gy(j) + (J(j) 
and (gy X (J)(j) = gy(j) X (J(j). Let A (0) be the mini
mal a-field of subsets of 0 generated by the Enl and 
Pr the set of probability measures defined on A(O), 
with P, P', ... denoting informal variables ranging 
over Pro 

The relation E(7', P, tp), which is central to this 
work, can now be defined as follows: 

£(7', P, tp) == Vq [q has exactly one free sequence 
variable and at most one free probability measure 
variable and [gy I qp(P, gy)] E A(Q) and 

P[gy I qp(P, gy)] = 1 =>qp(P, tp)]. (12) 

Here q is a syntactic variable which ranges over all 
formulas in L(7'), the language of Zermelo-Fraenkel 
set theory, 7'. A variable is bound in a formula if it is 
acted on by either of the quantifiers 3 or V; otherwise 
it is free. The formula qp is obtained from q by setting 
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q == q l' if q already has P free or has no free probability 
measure variables. If q has a probability measure 
variable other than P free, then one replaces all free 
occurrences of the variable by P. If P is already bound 
in q, one must first change the bound P to a different 
variable (e.g., P") before the replacement is made. 
This is a standard procedure for changing the vari
ables of an expression without changing its meaning. 

In words £(T, P,?p) is the statement that, for all 
formulas q of L(T) which contain exactly one free 
sequence variable and at most one free probability 
measure variable, if q is such that the set of all f(! for 
which ql'(P, cr) is true is in A(O) and is a set of P 
measure I (or is true P almost everywhere), then 
ql'(P, -) is true at?p. Equivalently, £(T, P,?p) says that 
?p is contained in the intersection of all T-definable 
subsets of 0 which are elements of A (0) and are sets 
of P measure 1, where P can occur in the defining 
relation for the subsets. 

It should be noted that the semantic concept of 
truth is not an essential part of the definition of 
£(T, P, ?p). The reason is that one can replace 

[T I qz'(P, rp)] E A(O) 

and P[f(! I qz'(P, f(!)] = I in the definition by the equiv
alent expression 

3£ [V f(! (f(! E E <=> ql'(P, f(!» A £ E A(O) A P£ = I], 

which (see below and Sec. II) can be converted to a 
formula of T. In a strict sense, qz'(P, f(!) is not a formula 
of T, as P and f(! are informal elements and not sym bois 
of L(T). However, qz'(P, f(!) corresponds to the for
mulaq.,(x, y) A Pr (x) A seq (y) in L( T), where Pr (x) and 
seq (y) are the defining relations in T for "x is a prob
ability measure on A(O)" and "y is an infinite se
quence of natural numbers." Similar arguments apply 
to expressions containing £, F, i, j, etc. 

Some useful properties of £( T, P, ?p) are given by 
the following three metatheorems. The proofs will not 
be given, as they are given elsewhere. 9 

The first metatheorem says that the definition of 
£(T, P, ?p) is not empty. 

Metatheorem 1 (Existence): For all P there exist 1p 
such that £(T, P, 1p) holds. In fact there exist many 
sequences 1p such that £(T, P, 1p) holds, since the proofs 
consists of showing that P [1p I £( T, P, 1p)] = I. 

Metatheorem 2: Let q be any formula of T with one 
free sequence variable and at most one free probability 
measure variable. Then for any rp and P if £(T, P, f(!) 
holds and If(! I qp(P, f(!)] E A(O), then 

P[f(! I qp(P, rp)] = 0 => lqp(P, 1p). 

Some definitions are needed for the next meta
theorem. A probability measure P is nontrivial if 

Vcr (P{{p} = 0). (13) 

This excludes pathological measures which are non
zero on any single element subset of n. 

A formula q in L(T) (implicitly) defines a sequence in 
n if q includes the defining conditions for sequences in 
0, has exactly one free variable, and is such that 

is a theorem in T. 

Metatheorem 3 (Undefinability): For any sequence 1p, 
if there exists a nontrivial measure P such that E(T, P, 
1p) holds, then for all formulas q in L(T), if q defines a 
sequence in n, we have lq(?p). 

The proof9 consists of showing that if q defines a 
sequence in 0, then [g) Ilq(cr)] is the complement of a 
one-point set and is thus a set )', for q, such that 
y E A(O) and Py = [ for P nontrivial. Thus, by Eq. 
([2), we have lq(lp). 

This theorem places strong limitations on which 
sequences are definable. To see this, one notes that an 
equivalent statement of this theorem is that, for all1p, 
if there exists a nontrivial P such that £( T, P, 1p) is 
true, then ?p is not definable in T. Furthermore, this 
holds in any model of T. Conversely, any T-definable 
seq uence ?p is such that £( T' P, ?p) is false for all non
trivial P. Also, this and the existence metatheorems 
place strong limitations on the arbitrary introduction 
of names of elements of nor R into L(T).9 

The definition of T-randomness is an extension of 
that given before. l 

RT(q) == 3P [P is a nontrivial product probability 
measure defined on A(O) and £(T, p, g)]. (14) 

This definition is similar to that given by Kruse10 and 
includes all the tests for randomness given in the other 
literature definitions.u - 13 In particular, the definitions 
which consider subsequence selection procedure tests 
are included.12 •13 

It is also clear from the definition and the existence 
metatheorem that there exist T-random sequences. 
In fact, the set of T-random sequences coincides with 
the set Up[f(! I £(T, P, rp)], where the union is over all 
nontrivial product measures. Also, from the unde
finability metatheorem, one has the result that any 
T-random sequence is not T-definable. This can be 
seen by the factthat all sequences in Up[f(! I £(T, P, f(!)], 
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where the union is over all nontrivial measures, are not 
definable in 7'. 

IV. RELEVANT PROBABILITY THEORY 
ASPECTS 

The aim of this section is to develop from the 
relevant probability theory background the result that 
many statements, which relate limit properties of 
sequences to appropriate expectation values, are 
formulas q(P, gJ) of 7'. Furthermore, conditions are 
given under which many of these statements hold P 
almost everywhere. Thus, by the definition of E( 7', 

P, "P), if these conditions are satisfied, the statements 
hold at "P. Ergodic and indecomposibility theorems 
are central to the argument. 

A. Background 

Some definitions are in order. Let 0, A(O), and P 
be defined as before. Let 0 be a point transformation 
with domain Do and range Ro both subsets of 0 such 
that Do E A(O). Any such 0 induces a set transforma
tionO'suchthatforeachB s;; RoandO'B s;; Do,with 
0' B defined by (B s;; D means B is a subset of D), 

O'B = [tp I Otp E B]. (15) 

Define A(Do) and A(Ro) to be the restrictions of A(O) 
to Do and Ro , respectively. That is, for each E E A(O) 
define En and Ell by 

ED = E n Do, 

Eu = E n Ro ' 

(16) 

{I 7) 

and let A (Do) be a collection of subsets of Do such 
that, for each set in the collection, Eq. (16) holds for 
some E in A(O). A(Ro) is defined similarly from Eq. 
(17). One sees from these definitions that the mappings 
E ....... En and E ....... Ell are many one-mappings from 
A (0) to A (Do) and A (Ro) which preserve all count
able set operations. Thus A (Do) and A (Ro) are (5-

fields. 0 is a measurable transformation14 if, for each 
Ell E A (Ro), 0' Eli E A (Do)· 

The reason such transformations must be included 
is that the discussion must be able to handle subse
quence selection procedures. A subsequence selection 
procedure is a mapping 0 defined for allj and tp E Do 
by 

(Otp)(j) = tp(g(gJ,j). (\8) 

Do is the set of all gJ such that g( gJ,j) is defined for all 
j where Do can be a proper subset of O. For example, 
in the selection procedure "select, in the natural order, 
each element which follows the occurrence of a 1 by 
one place"; 0 is not defined for any sequence having 
only a finite number of ones. 

Let T denote any point transformation with domain 
DT and range RT equal to 0 and which is measurable, 
and let T' be the corresponding set transformation, Eq. 
(IS). Define a set transformation to be structure preserv
ing on 0 if it preserves all countable set operations 
and takes 0 to 0 and 0 to 0 .15 It is easy to see from 
Eq. (15) that any such T' is structure preserving on .0. 
Clearly, any T is a special case of the definition of O. 
An example which will be much used later on is the one
sided shift operator defined for all tp and j by 

(Ttp)(j) = tp{j + I). (\9) 

For any 0 let To and To' denote the restriction of 
T to Do and T' to Ro. That is, for each B s;; Ro, 

To,B = T'R. (20) 

One has the following theorem. 

Theorem 1,' Let 0 be any point transformation with 
Do s;; 0 and Ro s;; 0 with A(Ro) as defined by Eq. 
(17). Let T be a measurable point transformation 
with domain and range equal to n, and let To' be the 
restriction of T to Ro. Then, if 0 and T are such that 
T'Ro = Ro , To' is structure preserving on Ro and 
maps A (Ro) into A (Ro). 

Proof' The proof that To' is structure preserving on 
Ro and maps A (Ro) into A (Ro) proceeds by transfinite 
induction on the generating process for A(Ro). By 
Eq, (17) and the definition of A (n), A (Ro) is a system 
of subsets of Ro closed under Ro-complementation 
and the formation of countable unions and which 
contains the EnlR for 11, 1 = 0, 1, ... [Egs. (II) and 
(17)]. 

Since T' is measurable and structure preserving on 
o and T'R() = R(), one has, for each 11, I, 

To,E IlIR = T' (E,,/ n Ro) 

= T'E"l n Ro E A(Ro) since T'E"l E A(O). 

Suppose for any ER E A(Ro) that To.ER E A(Ro). 
Then, since A(Ro) is closed under Ro-complemen

tation, one has (Ej~ = Ro - Ell), 

To,(E~l) = T' (Ro - E n Ro) 

= Ro - T'E n Ro = (To.ER)C E A(Ro). 

Finally, let En, and ToER, all be in A(Ro) for i = 
0, 1, .... Then, since A (Ro) is closed under the forma
tion of countable unions, 

TO'(U Elf;) = T' U (Ei n Ro) = U (T'E; n Ro) 
1. 1 1-

= U To·ERiEA(Ro)· QED 
i 
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It is to be noted that, by referring to this and the 
following as theorems and not metatheorems, it is 
implied that the statement of each theorem is a for
mula of ZF set theory and the formula can be proved 
within the theory. A proof of this is not given here. 
However, the theorems given her~ are clearly informal 
theorems of probability theory. Thus, since one can 
conservatively extend set theory to include the de
fining axioms of probability theory, the informal 
theorems and their proofs should be formalizable 
within set theory. 

Let P be a probability measure defined on A(Q), and 
let 0 be a measurable transformation such that 
Do E A(Q) and PDo > O. Then P induces proba
bility measures Pn and Po defined on A(Do) and 
A(Ro), respectively, by 

1 
PnED = - PED (2l) 

PDo 
for each ED E A(Do) and 

(22) 

for each ER E A (Ro). 
As further definitions let P On and Po be the proba

bility measures!5 defined for each ER in A(Ro) by 

and 

PoE R = lim P o"E R , (24) 
" .... 00 

if the limit exists. [To save on notation, we use Eq. (19) 
freely and use T' instead of To,.J 

Finally, let X be a measurable function from Ro to 
R, the set of real numbers. For any T such that 
T'Ro = Ro , T induces a transformation l) on the set 
of all such functions defined by 

(25) 

for all q; E Ro. (Since T'Ro = Ro , Tq; E Ro if q; E Ro ·) 
For each X, define Xn and X by 

and 

where X(q;) is defined if and only if the limit exists. 
The two main theorems from probability theory 

which are needed here are an ergodic theorem and the 
indecomposibility theorem. An appropriate ergodic 
theorem!5 extended to include the transformations 0 
is given below. 

Theorem 2 (Ergodic): Let T: Q -+ Q be a measurable, 
structure-preserving transformation with domain and 
range equal to Q and 0 a measurable transformation 
with Do c;: Q and Ro c;: Q such that (I) Do E A(Q) 
and RoEA(Q), (2) PDo > 0, and (3) T'Ro = Ro . 
Let To be the restriction of T to Ro and P On be defined 
by Eq. (23). 

If limn P On = Po exists on A (Ro) and is a probability 
measure, then, for every nonnegative measurable 
function X, limn Xn(q;) exists and 

n .... 00 

almost everywhere. 

In this theorem r is the sub a-field of A(Ro) of in
variant subsets of Ro , i.e., To'C = C for each C E r 
and Po = Po on r. ESX is the r-measurable To-in
variant function defined as the restriction of the indef
inite integral of X to r by!5 

r (E[;X)(q;)dPor(q;) = r XCfP)dPo(q;) (28) Jc Jc 
for each C E r. The existence and Por almost-every
where uniqueness of E[;X is guaranteed by the Radon
Nikodym theorem.I4 Here P or is the restriction of Po 
to r. The To invariance of E[;X means that 

(EbX)(Tog;) = Eb(X)(q;), 

P or almost everywhere. 
If Po, T, and r are such that there is a sub a-field 

r' which is Po equivalent to rand r' is generated by a 
countable partition {C;} with i = 0, I, . " of Ro, 
then ESX can be given the more explicit definitionl5 

(EJ;X)( q;) = Z (Eoc,X)] cl fP), (29) 

which holds Po almost everywhere in Ro. 
Here ] c is the characteristic function for the set 

C;. For th~se i for which PaC; > 0, Eoc,X, the con
ditional expectation of X, given Ci , is defined by 

Eoc,X = ~ r X(g;) dPo(q;). (30) 
roC; Jei 

If P oCi = 0, then Eoc,X is undefined, and so (ESX) ( g;) 
is undefined for any g; such that I ciC g;) = 1 and 
PaC; = 0. 

The proof of this theorem will not be given here as 
it is given elsewhere!5 and is rather long. It is to be 
noted that, from the conditions given in the theorem 
for P, T, and 0, the triple (Ro, A(Ro), Po) is a 
probability measure space with To' a translation!5 on 
A(Ro) (Theorem 1). Thus the proof given by Loeve 
applies directly to A (Ro)-measurable functions on Ro· 
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The ergodic hypothesis is equivalent to the state
ment that To' is P indecomposable, or that, up to a Po 
equivalence, the a-field r contains only the empty set 
o and Ro. In this case the sum of Eq. (29) reduces to 
one term with the result that Ebx becomes a constant 
Po almost everywhere, i.e., from Eqs. (29) and (30) 
one has 

(E~X)(O) = [ X(q,) dPo«(f') = (X)Pr, (31) 
JUrI 

holds Po almost everywhere. Here and in the following 
(X) l' denotes the expectation value of X relative to P. 
From this, one has the following theorem. 

Theorem 3 (Indecomposability)l5: The following are 
eq uivalent : 

(a) T' is Po indecomposable and POll - Po on 
A(Ro); 

(b) limn Xn exists and is a constant Pu almost 
everywhere for every nonnegative measurable X; 

(c) for each Ell E A(Ro), IE" = PoElI , Po almost 
everywhere. 

Again the proof will not be given here as it is given 
e1sewhere,15 

In what follows X(O) = . .. is equivalent to the 
longer statement that limn Xn(O) exists and equals· ... 

Corollary I: If T, P, and 0 satisfy the conditions of 
Theorem 2 and the ergodic hypothesis holds, then for 
every nonnegative measurable function X 

X(O) = [ X(q;) dPo(q;) = (X)Po' JRo 
Po almost everywhere. 

Proof: Immediate from Theorems 2 and 3 and Eqs. 
(27) and (31). 

Corollary 2: If T, P, and 0 satisfy the conditions of 
Theorem 2, the ergodic hypothesis holds, and To' is 
Po measure preserving, i.e., for each ER E A(Ro) 

PoTo,E R = PoEll , 

then, for every nonnegative measurable X, 

X(O) = [ X(O) dPo(O) = (X)l'o' JRo 

(32) 

Proof' Immediate from Corollary I and Eqs. (23) 
and (24). 

Corollary 3: If P, T, and 0 satisfy the conditions of 
Theorem 2, then,for every nonnegative measurable X, 

the formula 

XOq; = (EbX)(Oq;) 

holds Pn almost everywhere on Do. If also 0 is such 
that PDo = I, then this formula holds P almost 
everywhere on Q. The same conclusions apply to the 
formulas XOrp = (X)po and XOq; = (X)po if the 
ergodic hypothesis holds and also To' is Po measure 
preserving, respectively. 

Proof' From the ergodic theorem and Eqs. (27), 
(22), (21), (16), and (15), one has 

1 = Po [ep I X(g;) = (E~X)(ep)] 
= p]) [r I XOq; = (E~X)(Oq;)] 

= P [q; I XOq; = (£bX)(Oq;)], 

where the last equality holds if and only if PDo = l. 
Application of the same argument to the formulas of 
Corollaries 1 and 2 gives the desired result. 

B. Main Results 

The following metatheorems include the conditions 
that X, 0, and Tare T-definable. To see what this 
means, we first consider T. Entirely similar definitions 
hold for 0 and X. 

To say that T is T-definable means that there is a 
formula A «(P, 0) in L( T) with the following properties: 
(a) the existence and uniqueness conditions, 

3({30A(q,0) 

and Vq;VOV1p (A(q', 0) A A(Cf, 1p) ~ 0 = 1p) are theo
rems of T, and (b) the defining form ula V (f'V 0 (T( rp) = 
o <=> A (q;, 0» is true for T. [Other conditions in the 
definition of T, such as the equality between Q and the 
domain and range sets of T and the A(Q) measura
bility of T, are given by other formulas.] If T is T

definable, then one can extend T and L(T) by adding a 
symbol T to L(T) as the name of T and the defining 
formula with T replacing T as a defining axiom 
(Sec. JI). 

In a strict sense these formulas are not yet formulas 
of L(T) as Cf and 0 are informal elements and are not 
symbols of L(T). This is remedied by replacing A(ep, 0) 
by A(x,y) A seq (x) A seq (y), VqB(ep"') by 

'Ix (seq (x) ~ B(x' .. », 
and (3epB(rp"') by 3x(seq (x) A B(x" ·»in the above. 
Here B(ep ... ) denotes any formula with at least ep free, 
and seq (x) denotes the defining relation in set theory 
for "x is an infinite sequence (set of ordered pairs) of 
natural numbers." 

The definition of T-definability for 0 is exactly the 
same as the difference between 0 and T (as a special 
case of 0) appears in the other defining conditions. 
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The T-definability of X is given by replacing () and 1p 

in the above by real number variables. Corresponding 
replacements of seq ( - ) by Re ( - ) must also be made. 

Metatheorem 4: If P, T, 0, and X satisfy the con
ditions of the ergodic theorem and if T, 0, and X are 
T-definable, then the formula obtained by replacing 
X, T, and 0 by their respective names X, T, and 0 in 
X(Oq;) = E[;X(Oq;) is a formula in (the extended) 
L( T) with P and q; free. Similarly, the formulas XOq; = 

(X)po and XOq; = (X)po with X, T, and 0 T-defin
able are formulas in L(T) with P and q; free. 

Proof" The formula X(Oq;) = EF;X(Oq;) can be 
converted into a formula of T, as it is tedious but 
straightforward to show that the various concepts in
volved of limit, minimal a-field on the En!, A(Q)
measurable functions, integral, etc., are all definable 
in T. Thus, by use of the process of extension by def
initions Eqs. (1)-(10) and the replacement of X, T, 
and 0 by their respective names, one obtains a for
mula q(P, q;) in the extended L(T) with P and q; free. 
[As noted before, q(P, q;) is strictly not in L(T), but the 
corresponding q(x,y) 1\ Pr (x) 1\ seq (y) is in L(T).] 

By the same arguments one shows that XOq; = 

(X)po and XOq; = (X)l'o correspond to formulas in 
the extended L(T). QED 

From this, one obtains directly the desired result in the 
following metatheorem. 

Metatheorem 5: Let P be a probability measure and 
1p a sequence of natural numbers such that E(T, P, 1p) 

[Eq. (12)] holds. Let T, 0, and X satisfy the conditions 
of Theorem 2 and be T-definable. Also let P and 0 be 
such that P Do = I. Then the following hold: 

(I) If limn~oo P On = Po exists, then 

(33) 

(2) if, further, r is, up to a Po equivalence, generated 
by a countable partition {Ci } of Ro , then 

(34) 

with Eoc,X given by Eq. (30) and POCi > 0 for that 
C i for which 01p E Ci ; 

(3) if, further, the ergodic hypothesis holds, then 

X01p = r X(q;) dPo(q;) = (X)po; (35) 
JRo 

(4) if, further, T is Po measure preserving, then 

X01p =J X(q;) dPo(q;) = (X)Po' (36) 
Ro 

Proof" Since T, 0, and X are T-definable, one can, 
in Eqs. (33)-(36),replace T, 0, and X by their respec
tive names T, 0, and X and add the defining relations 
as axioms to T. By Metatheorem 4, each of the 
resultant formulas, with q; replacing 1p, is a formula 
qi(P, q;), i = 1··· 4, in L(T) withP and q; free. In Eq. 
(34) the ~i is equivalent to a binding of the variable 

Ci · 

Furthermore, by Theorems 2 and 3 and Corollaries 
1-3, if the conditions given in (1)-(4) hold, then the 
appropriate formula qi(P, q;) is true P almost every
where {i.e., P[q; I qi(P, q;)] = I}, and, by the definition 
of P (or the definition of Cauchy limit and the meas
urability of X, T, and 0), [q; I qi(P, q;)] E A(Q). Thus 
from the definition of E( T, P, 1p), if the conditions 
given in (1)-(4) hold, then one has q/P, 1p). [Note that 
in part (2) there exists a C; such that P oCi > 0 and 
01p E Ci • For suppose that 01p E C but that PoC = O. 
Then, by Eqs. (29) and (30), X01p would not exist, 
contrary to the statement o(part (I).] QED 

Some comments to clarify the meaning of this 
metatheorem are in order. First one notes that if the 
general hypotheses of the metatheorem are satisfied 
and limn POn = Po exists, then limn X,,(01p) exists and 
equals (E[;X)(01p), with (E[;X)(q;) given by Eq. (28). 
Now this statement, Eq. (33), holds for all four parts 
of the metatheorem. Parts (2)-(4) are resultant state
ments which hold, in addition, if the general definition 
of EF;x as the Radon-Nikodym derivative of a set 
function can be made more explicit. B •Is 

In particular, if T, P, and 0 are such that, up to a 
Po equivalence, r is generated by a countable parti
tion of Ro , then, outside of Po null sets in r, 
(Ef,X)(q;) has at most countably many distinct values. 
[The values of (EF;X)(q;) are constant within each 
generator of r irrespective of how many there are.] 
Then part (2) of the metatheorem says that there 
exists a generator C such that P oC > 0 and 01p E C 
and X01p = EocX given by Eq. (30). The formal 
statement of this, 

3C (PoC > 01\ 01p E C 1\ X01p = EocX), (37) 

with C a variable ranging over all generators of r, is 
a formula q(P, 1p) of L(T) with P and 1p free, which is 
equivalent to Eq. (34) and associated statements and 
must be true at 1p. 

If, further, the ergodic hypothesis holds, then, out
side Po null sets in r, (E[;X)(q;) has only one value, 
(X) Po' which is obtained from Eq. (30) by setting 
Ci = Ro (recall that T'Ro = Ro). Thus in this case 
X has, Po almost everywhere, only one value and thus 
must assume that value at 01p. This is what part (3) 
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says. Finally, part (4) of the metatheorem is a conse
quence of the fact that if T is Po measure preserving 
[Eq. (32)], then by Eqs. (23) and (24) p() = p() on 
A(Ro)· 

Finally, there are some more general comments to 
be made. First one notes that the definition of £(T, 
P, tp) tells one, for all formulas q in L(T), if ... , then 
qp(P, tp). The definition says nothing about how one is 
to determine for each q whether or not the "if" condi
tions are satisfied. In particular, one wants to know 
whether or not a formula ql'(P, ({') is true P almost 
everywhere. 

The axioms of T playa role here, as it is possible to 
prove from them theorems which state that certain 
formulas satisfy the conditions in the definition of 
E( T, P, tp). As an example, for formulas of the general 
form of Eqs. (33)-(36), the ergodic and indecompos
ability theorems give conditions on 0, P, and Twhich 
must be satisfied if the formulas are to be true P 
almost everywhere. However, in this case the problem 
then arises as to how one knows whether or not the 
conditions on 0, P, and T are satisfied. 

The requirement that X, 0, and T be T-definable is 
important. For suppose that 0 were not T-definable. 
Then the formula XOtp = (Ei;X)(Otp) would be a 
formula q(O, P, cp) with 0, P, and cp free and would 
not satisfy the defining conditions in the definition of 
E( T, P, tp). Thus there would be nothing preventing tp 
from lying in the P null set of the above formula [i.e., 
nothing would prevent XOtp ,,= (ESX)(Otp) from being 
true]. 

A more important reason for the T-definability of 
T, 0, and X is that sufficient conditions are thereby 
imposed on the class of allowed T, 0, and X to satisfy 
the existence requirement (Metatheorem 1) for E(T, 
P, tp). To see this, suppose that the definition of 
E( T, P, tp) admitted all formulas of the type XOtp = 
(X)po for all 0, not just the T-definable ones. Formally, 
this is achieved by the well-known method of addition 
of constants6 to L(T). That is, for each 0, one adds a 
constant symbol 0 to L(T) as a name for 0 without 
adding defining formulas (which do not exist for most 
0). Then for each 0, and T-definable T and X, if 0, 
T, X, and P satisfy the conditions of the ergodic 
theorem and Corollaries 1 and 3, the formula XOcp = 

(X) Po satisfies the conditions in the definition of 
£(T, P, tp) now given for the greatly extended L(T). 
Thus XOtp = (X)Po must hold for all such O. 

However, in this case one can see that, at least for 
some important cases, there exist no tp which satisfy 
this requirement. [The similar case of the failure of the 
existence requirement for E(T, P, tp) under arbitrary 
additions of names of sequences to L(T) has been 

noted elsewhere.]!1 To see this, let tp be any sequence, 
and let II be a number which tp contains an infinite 
number of times. Let X = /)<'''.' the characteristic 
function for the event £110 [Eq. (II )], and T be the 
one-sided shift operator [Eq. (19»), and P a nontrivial 
product measure such that 0 < P£1I0 < I. Define 0 
to be that subsequence selection procedure 0 9 [Eq. 
(18)], such that the corresponding place label function 
g: N ~ N is such that tp(g(j» = 11 for eachj. It is easy 
to ShOW13 •

16 that XO!/P = P£I/() < I, P almost every
where, but that XOytp = I and thus XOytp ,,= (X)/'o = 
(X)Po' 

Entirely similar arguments can be used in the case 
of the T-definability of T and X. In essence the argu
ment used here is an adaptation of the argument, used 
to show the nonexistence of random sequences when 
the definition was given in terms of the classical 
totality of subsequence selection procedures.1. 1l- 13 

V. AGREEMENT BETWEEN THEORY AND 
EXPERIMENT 

A. Physical Theories 

Here the same type of construction as was given in 
[ is used. Let Q be a mapping Q: N ~ G X K, where 
N is the set of natural numbers, G is the set of instruc
tions for all preparation acts, and K is the set of 
instructions for all observation acts. Each instruction 
g in G and k in K is considered to be a sentence of 
arbitrary but finite length, written in some suitable 
informal language. Also G and K contain all such 
instructions, not just those appropriate to physics. 
Also (I, Appendix) it is assumed that the result of 
carrying out any observation act k in K yields (a symbol 
for) a natural number and not a real number. 

As before, l the triple (Qst) denotes an infinite 
string of preparation and observation acts where 
s:N ~ Nand t:N ~ N are functions from N to N. 
For each j, Q(j) = (gj' k j) is an ordered pair of 
instructions for a preparation and observation act, 
respectively. s(j) and t(j) give the space and time 
positions (relative to some space-time ordering pro
cedure) at which Q(j) is to be carried out. rt is assumed 
that each k in K includes instructions for the space
time positioning relative to all preparation acts gin G. 
The triple Q(j), s(j), t(j) thus describes the jth single 
measurement in the sequence, the carrying out of 
which will yield a natural number, and (Qst) describes 
an infinite sequence of single measurements, or an 
experiment. 

It is to be emphasized that the restriction of all k's 
in K to include relative space-time positionings is 
made purely to conserve on notation and is entirely in
essential. Clearly one can replace (Qst) by (QSlt1S2t2), 
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where S1 and 11 are functions which give the space-time 
positions for carrying out each preparation act in Q 
and S2 and 12 give the space-time positions for carrying 
out each observation act in Q. In this case such a 
restriction is not necessary as the more cumbersome 
notation s1/1s2/2 carries all the necessary information. 

It is also to be noted that, in essence, sand t 
describe orderings of the elements of Q with respect to 
other background observations as seen by an observer. 
They do'not assign a particular space-time metric to 
the elements of Q. Such an assignment will not be 
considered here as it is outside the scope of this paper. 
Suffice it to say that, in common with other authors, 17.l8 

it is felt to be desirable to clearly separate the order 
aspects of space-time from the metric aspects. 

Let [QSI] denote the set of all infinite strings of 
instructions which an observer can actually carry out. 
Clearly this is a subclass of the class of all possible 
triples, as some instructions in G or K may be incom
plete, or impossible to carry out, or correspond to 
nonterminating' procedures, etc. Also I mllst be non
decreasing as one cannot do the (n + l)th single 
measurement before the nth. 

It is to be emphasized that the detailed nature of 
[QSI] is irrelevant to this work. If desired, fQst] can be 
considered to be the class of all infinite sequences of 
single measurements, or some other sufficiently in
clusive description of sequences of arbitrary empirical 
acts. It is not necessary for this work that the elements 
of [QSI] be sequences of instructions. 

The only properties of [QsI] which are really 
necessary here are (1) [Qst] must be sufficiently 
complete to include all infinite sequenc~ of single 
measurements which are properly the domain of 
physics and (2) the elements of [Qst] must correspond 
to infinite sequences of empirical acts which yield 
infinite sequences of (symbols for) natural numbers. 

The requirement that the outcome of a single meas
urement be a natural number is used because, as was 
discussed in I, the outcome of a single measurement 
corresponds to a natural number, not a real number. 
As far as the probability theoretic aspects of this work 
are concerned, one can just as easily consider infinite 
sequences of real numbers. It is not clear, though, if 
one can carryover the definition of E(7';, P, Vi) and 
the resulting metatheorems to apply to infinite se
quences of real numbers. 

For each (Qst) in [Qst), define ViQst to be the se
quence obtained by actually carrying out or doing 
(Qst). Finally, let U be a mapping with domain in 
[Qst) and range in the set of all probability measures 
defined on A(Q). 

In this work a physical theory will be considered to 

correspond, in essence, to some mapping U. That is, 
a physical theory is to be thought of as some system 
such that, for each experiment (Qst) in its domain, the 
theory generates a probability measure U(Qst) on 
A(Q). {From now on, the triples (Qst) in [Qst] are 
referred to as experiments.} 

Now, in general, different physical theories corre
spond to different mappings U and thus will assign 
different probability measures to the same (Qst). 
Thus not all physical theories are valid, and there are 
clearly restrictions on the class of all mappings U in 
order that U be a valid physical theory. (Since each 
physical theory, as an extended system, is assumed to 
generate a unique mapping U, a physical theory will 
often be identified with the mapping U which it 
generates. ) 

B. Agreement between Theory and Experiment 

One important restriction on a theory U is that if U 
is valid, it must agree with experiment. It is proposed 
that the statement of agreement between a physical 
theory U and experiment, relative to T, A(T, U) be 
defined by 

A(T, U) == VQst [U(Qst) defined 

=> E(T, U(Qst), ViQst)], (38) 

with E(T, U(Qst), ViQst) given by Eq. (12). 
In words this definition says the following: U T

agrees with experiment if and only if, for each experi
ment (Qst) in the domain of U, any property of 
sequences which is expressible by a formula in L(T) 
with one free sequence variable and which may contain 
the measure U(Qst) and which is true U(Qst) almost 
everywhere is a property possessed by ViQst. 

An equivalent statement of this definition is that, 
for each experiment (Qst) in the domain of U, the 
class of tests for agreement of the theory U at (Qst) is 
the class of T-definable properties of sequences [where 
U(Qst) can occur in the defining relation] possessed 
by U(Qst) almost all sequences. The definition then 
says that each property in the class must be possessed 
by the sequence obtained by actually carrying out 
(Qst), i.e., by 1fQst. 

Note that the class of tests for agreement at any 
experiment clearly depends on the experiment. The 
reason is that, in general, a T-definable property 
possessed by U(Q's't'), almost all sequences, need not 
be possessed by U(Qst), almost all sequences. 

Now, if Eq. (38) is to be an acceptable definition, 
it must be shown that the class of T-definable properties 
of sequences is sufficiently broad to include the full 
intuitive meaning of agreement between theory and 
experiment. This was gone into in some detail in I. 
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There it was seen that, for the more restrictive H 
(approximately second-order arithmetic) replacing T 
in A(T, U), the proposed definition did include much 
of the intuitive meaning of agreement between theory 
and experiment. . 

However, it was also seen that, for H as defined In J, 
there were many imp.ortant proeerties which are part 
of the intuitive meanmg of agreement between theory 
and experiment and were not included in the definiti~n. 
These included the limit properties of sequences which 
must be related to expectation values given by the 
physical theory. .. 

One of the main purposes of thiS paper IS to show 
that these properties excluded by the ~~finiti~n given 
in I are included in the stronger defimtIOn given here 
with T = ZF set theory. In fact, one has the following 
metatheorem. 

Metatheorem 6: Let U agree with experiment with 
respect to T. Let (Qst) be any instruction sequence in 
the domain of U. Let T be any A (n)-measurable trans
formation with domain and range equal to n. Let 0 be 
an measurable transformation with domain Do <;; .0 
and range Ro <;; .0 such that (a) Do E A(n) and 
RoEA(n), (b) U(Qst)Do = 1, and (c) T'Rf! = Ro · 
Let X be any nonnegative, measurable functIOn from 
Ro to the real numbers. 

Then, if T, 0, and X are T-definable, the following 
hold: 

(1) If limn U(Qst)On = U(Qst)o exists, then 

X0"PQst = (Er;X)(0"PQst), (39) 

with r the sub a-field of T' invariant sets in A(Ro) and 

E6'X defined by Eqs. (28)-(30) with U( Qst )0 replacing 

Po· 
(2) If also U(Qst), 0, and T are such that, up to a 

U(Qst)o equivalence, r is generated by a countable 
partition {Ci } of R o , then 

X0"PQst = .2 (Eoc;X)Icl0"PQst), (40) 
i 

with U(Qst)OC i > 0 for that Ci for which 0"PQst E C i 

and Eoc;X given by 

EocX = 1 ( X(IP) dU(Qst)o(Q?). (41) 
• U(Qst)OC i JCi 

(3) If also U(Qst) and 0 are such that the ergodic 
hypothesis holds, then 

X0"PQst = ( X(Q?) dU(Qst)o(IP) = (X)U(Qst)o. (42) JRo 
(4) If also U(Qst) and 0 are such that Tis U(Qst)o 

measure preserving, 

X0"PQst = [ X(cp) dU(Qst)u(q,) = (X)U((Jstlo. (43) JRf) 
Proof: By the definition of T-agreement between 

theory and experiment [Eq. (38)], E(T, U(Qst), "PQ~t) 
holds for each Qst in the domain of U. By hypothesIs, 
T, 0, X, and U( Qst) satisfy the conditions of Meta
theorem 5. Since parts (1)-(4) are merely restatements 
of the corresponding parts of Metatheorem 5 for the 
measure U(Qst) and the sequence "PQst, one has 
immediately that (1)-(4) hold. QED 

In order to better understand this metatheorem and 
the definition of T-agreement between theory and 
experiment, some examples are given. Let 0 be the 
identity operator, T the one-sided shift operator ~E9. 
(19)] and X = ~ nih' ,with IE the characteristic , £.n ~nO "'nO 

function for the set EnO [Eq. (II )]. This particular 
X and T occur so often that the resulting X is denoted 
here by M, where MQ? is the limit mean of Q? defined by 

1 i=1I-1 

lim - 2 cpU), 
n-<X) n i=O 

Now let the physical theory U and the experiment 

(Qst) be such that, among other things, U(Qst) exists 
for the one-sided shift, the ergodic hypothesis is not 
valid, and the r is almost surely generated by a 
countable partition ofn (Ro = .0). This means that 
U predicts that the limit mean of the sequence ob
tained by actually doing (Qst) will be equal to some 
real number in a set of at most countably many real 
numbers. Furthermore, the prediction is that the 
particular value assumed by the limit mean is deter
mined by the requirement that "PQst E C, Eq. (37) for 
some non-U(Qst) null generator C of r. Also, each 

number in the set is equal to 2n nU(Qst)(Eno I C), 

where U(Qst)(E"o I C) is the conditional probability 
of the event E nO ' given that C has occurred [Eq. (41)], 
where C is a non-U(Qst) null generator of r. Note 
that U does not predict what the value of M"PQst will 
be. It states that M"PQst must be in a particular set of 
real numbers and gives a condition for determining 
which number in the set equals M"PQst. 

The metatheorem now says that if U T-agrees with 
experiment, one must find, on actually doing (Qst), 
that this prediction is true. That is, one must find out 
that 

_ V(QSi) (Eno n C) 
M"PQst = ~ n U(Qst)C (44) 

is true for that non-U(Qst) null generator C for which 
"PQst E C. 



                                                                                                                                    

372 PAUL A. BENIOFF 

If, however, the ergodic hypothesis is valid for T 
and U(Qst), then this means that U predicts that 
Mm lies in a set containing only one real number, TQ .. t 

~r. nU(Qst)Eno , and that "PQst E CO where, up to a 
U( Qst) equivalence, CO = .Q and r is generated by 
Co and 0. Clearly, here U does predict what the value 
of M"PQst will be. By the metatheorem, i~ U T-agrees 
with experiment one must find out, on domg Qst, that 

M"PQst = ~ 11 U(Qst)E llo (45) 
" is true [Eq. (42)]. . 

Finally, if U says that (Qst) is such that U(Qst) IS T 
invariant, then, if U T-agrees with experiment, the 
metatheorem says that one must find out that [Eq. 
(43)] 

M"PQs{ = ~ nU(Qst)Er,o (46) 
" is true. 

{It should be recalled that, for any 0, T, and X, not 

just those in this example, U(Qst~ (if it exists) is a T
invariant measure [Eq. (32)] and X, as a r-measurable 
function, is also T invariant. Thus, in this example one 

has U(Qst)En; = U(Qst)E"o and MTj"PQst = M"PQst 
independent of j.} 

As another example let Off = F",(r, where, for all 

j and If, 
(F",tp)U) = 1 if g:(j) = m 

= 0 if g:(j) =/= m, (47) 

and T and X be as above. Clearly this 0 satisfies the 
conditions given in Metatheorem 6 as Do = .0, Ro = 
.Q the set of all infinite 0-1 sequences, T'Ro = Ro , 0.1 , 

and 0 is measurable. If U T-agrees with experiment, 
all infinite sequences (Qst) of single measurements, 
for which T is ergodic with respect to U(Qst), must be 
such that one finds, on carrying out (Qst), that 

MF",1f(Jst = U(Qst)E",o' 

Here the facts that T commutes with Frn and that 
U(Qst)F:"Eli = U(Qst )E",j for each j have been used. 
If U(Qst) and Tsatisfy an ergodic theorem but not the 
ergodic hypothesis, or if T is ergodic and measure 
preserving for U(Qst), then relations simil.ar to_ Eqs. 
(44) and (46) will be valid. [Note the relatIOn ~q = 
~rn mMFmq holds U(Qst) almostever~wher~as MF",({ 
is the limit relative frequency for findmg m m q.] 

As a somewhat more complex example, let 01{ = 
F rp x F Til{ and T and X be as before. Then if U 
/~grees ;ith experiment and T is ergodic for U(Qst), 
Metatheorem 6 gives 

M0"PQst = M(F","PQs{ X F" Tj"PQst) 

= U(Qst) (£"'0 n £"j)' 

Here, too, T commutes with 0 and O'Elk = Emk n 
En •Hi for each k. This 0 is an example of those O's 
through which correlations among the elements of 
(Qst) are described. Thus, if U and (Qst) are such that 
the formula q(cp) of L(T) defined by 

q(q) == M(Fmep X FnTiep) = MFmep x MFnCP 

is true U(Qst) almost everywhere, then, if U T-agrees 
with experiment, Metatheorem 6 requires that 

M(F","P(')st x F"Tj"PQst) = MFm"PQs{ X MF,,1fQst 

hold. 
As a final example in which 0 does not commute 

with T, let T and X be as above and 0 be the subse
quence selection procedure "select, in the natural order. 
all elements which follow the occurrence of a 1 by one 
place." Clearly 0 satisfies the conditions of Meta
theorem 6. Do = [ep I (f contains an infinite number 
of I's] c .0, Ro =.0, T'Ro = R o , and one can 
easily show that Do E A(.o) and 0 is measurable. 
Also 0 is clearly L(T) definable; in fact, for each cP and 
j, (Og:)U) is If-effectively calculable.5 •6 

If (Qst) is such that T is ergodic for U( Qst) and also 
U(Qst)Do = I, then, if U T-agrees with experiment, 
Metatheorem 6 gives that 

M0"PQst = ~ 11 U(Qst)oE"o 
" 

must be true. Note that since 0 does not commute 

with T, one cannot write U(Qst)oE"o = U(Qst)O'Eno' 
As an aid to further understanding the definition of 

T-agreement between theory and experiment, consider 
the following question which often arises. Suppose one 
carries out an infinite sequence (Qst) of single meas
urements for which his theory predicts that the proba
bility is one that each single measurement outcome in 
the sequence "PQst is the same. The question then 
arises as to whether this means that, as a necessary 
condition of agreement of the theory at the experi
ment (QSf), one must find that "PQst is a constant 
sequence or whether it is sufficient to require only 
that the limit relative frequency of finding the same 
outcome be equal to I. 

To see what the definition given here says about this 
question, suppose that the theory U and the experi
ment (Qst) are such that (a) U(Qst) [q; I Vj (I{(j) = 
1 v rU) = 0)] = I and (b) the one-sided shift oper
ator T [Eq. (19)], an .0, is ergodic with respect to 
U(Qst). Finally, (c) suppose one interprets the predic
tion that the probability is one that each outcome is the 
same to mean that 

(48) 
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that is, that the limit ensemble probability19 for finding 
the outcome n for each single measurement equals I if 

n = 1 and equals 0 if n ¥: 1. [Note that U(Qst)En; = 
U(Qst)Eno independent of j.] 

From this one concludes the following: By Eqs. (12) 
and (38) and Metatheorem 6, if U T-agrees with 
experiment, then from condition (a) one must have 
that Vj ("PQst(j) = 1 V "PQst(j) = 0) is true. That is, 
"PQst must be a sequence ofO's and l's only. Condition 
(b) with the ergodic and indecomposability theorems 

means that Mq; = 2n nU(Qst)Eno is true on O,U(Qst) 
almost everywhere. Thus one must find out that 

M"PQst = 2 nU(Qst)E"o· (49) 
n 

Finally from condition (c), Eq. (48), one must find 
out that [Eq. (47)] 

M"PQst = MFn"PQst = 1 (50) 

or that the limit relative frequency for finding I in 
"PQst is equal to 1. 

For the case of individual outcomes, one notes that, 
from Eqs. (23) and (24), Eq. (48) is equivalent to 

[with (T'Y Eno = E"j] 

. 1 m-l 

hm - 2 U(Qst)Eni = 01.n· (51) 
m .... '" m j=O 

Thus condition (c) says that the limit relative frequency 
that U(Qst)Elj = 1, for j = 0, 1, ... , equals 1. It 
does not say that U(Qst)Elj = I for all j. [For 
example, Eq. (51) is satisfied if U(Qst)Elj = 1 unless 
j = 2!forsomeintegerl. Forthesej's U(Qst)Elj < 1.] 

Thus, if U T-agrees with experiment, the definition 
(38) requires for this case that, for each j for which 
U(Qst)E1j = I, one must find that "PQslj) = 1. For 
those j for which U(Qst)Elj < I, no prediction is 
made about the value of "PQst(j) [unless U(Qst)E1i = 
0, in which case (Metatheorem 2) one must find that 
"PQst(j) ¥: 1]. 

However, if one interprets the statement that a 
theory predicts that, with probability one, each out
come of a single measurement in (Qst) is the same to 
mean that T is also U(Qst) measure preserving [i.e., 
that U(Qst )E"j is independent of j for all n], then from 
Eq. (51) one must have that U(Qst)Elj = 1 for all j. 
Thus, in this case, if U 'T-agrees with experiment, one 
must find that "PQst(j) = 1 for all j. 

Thus one sees that the definition of T-agreement of 
a theory U with experiment does not give an unequiv
ocal answer to the question raised. Rather it say.s 
that if U and (Qst) are such that T is ergodic and 

U(QSt)Em1 = c5m.n independent of j, the limit relative 
frequency for finding m in "PQst equals 1 or that 

MFm"PQst = 0m.n [Eq. (47)]. The definition does, not 
require that "PQst(j) = m for each j. However, If U 
and (Qst) are also such that T is U(Qst) measure 
preserving, then if U 'T-agrees with experiment one 
must find out that "PQst is a constant sequence of m's. 

One should note, however, that, even in the more 
general case with T ergodic but not measure preserving 

and U(Qst)E"j = c5n •m , not only does one require that 
for almost all j, "PQst(j) = m, but the theory U pro
vides a specific (and possibly incomplete) list of j 
values for which one must find out that "PQst(j) = m. 
This is a consequence of the general property of the 
definition of 'T-agreement between theory and experi
ment that any T-definable subset of 0 which is a set 
of U(Qst) measure 1 must include "PQst as an element. 
This holds irrespective of whether the defining relation 
for the subset refers to a limit property or a nonlimit 
property of sequences. 

With respect to randomness' the following meta
theorem, given in I, holds for the stronger definitions 
given here. 

Metatheorem 7: Let U T-agree with experiment. 
Then for all (Qst) in the domain of U, if U(Qst) is a 
nontrivial product measure, "PQst is 'T-random. 

Proof: Immediate from Eqs. (14) and (38). 

C. Empirical Determinability of U(Qst) 

It was pointed out in I that, on intuitive grounds, a 
physical theory which agrees with experiment should 
also have the property that at least for some (Qst) the 
probability U(Qst)E for some events E in A(O) should 
be determinable from "PQst. For example, suppose one 
computes the probability of observing spin up in the 
first single Stern-Gerlach measurement in an infinite 
sequence of such measurements of proton spin pro
jections to be equal to i. (Each single measurement is 
made on a different proton.) One feels that under 
certain conditions one should be able to determine 
this probability by some limit mean operation on the 
infinite sequence of spin projection outcomes. In order 
to define this requirement and give sufficient conditions 
for it to be true, some definitions are necessary. The 
treatment is an extension and adaptation of that given 
in I to the stronger T. 

Let A'(Q) denote the subset of A(Q) which con
tains all and only those subsets of 0 which are T
definable; A'(O) is a small subset of A(O) since A'(Q) 
has countably many elements, whereas A(O) has un
countably many. AT(O) is a field of sets which clearly 
includes as a subset the minimal field A~(O) contain
ing the En!, with n, I = 0, 1, ... , as generators. 
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For each FE Ar(o) let OF: n - 0 0,1 be the trans
formation defined by 

(O}<,rl')(j) = 1 if Tirl' E F 

= 0 if TiT ¢ F, (52) 

for each q' and j, where T is the usual one-sided shift 
operator [Eq. (21»). nO,1 is the set of all infinite se
quences of D's and 1 'so 

The statement that U(Qst) is empirically deter
minable on Ar(o) from (Qst) is defined by 

Dt( T, U, Qst) 

== 'IF [F E Ar(o.) ~ MOF"P().,t exists and 

MO F"PV"t. = U(Qst)F]. (53) 

In words this definition says that for all T-definable F, 
in A (0.), the limit relative frequency that "POst' 
T"PQst, T2"PQst, ... is found in F exists and equals the 
probability of event F for the experiment (Qst) as 
given by the theory U. 

Metatheorem 8 gives sufficient conditions for 
Dt(r, U, Qst) to hold, 

Metatheorem 8: Let U T-agree with experiment. 
Then, for each (Qst) in the domain of U, sufficient 
conditions for U(Qst) to be empirically determinable 
on Ar(o.) from (Qst) are that the one-sided shift oper
ator T be ergodic and measure preserving with respect 
to U(Qst). 

Proof" Assume that Tis U(Qst) measure preserving 
and ergodic on O. By Eq. (52) DOl' = 0., Rop = 
0 0,1, T'Rop = R op ' U(Qst)Dop = I, and OFisA(O) 
measurable and or-definable if F is. Define X on 0 0 ,1 by 
X = IIi' , the characteristic function for E10 [Eq. 

-10 

(11)]. Clearly X and T are or-definable. 
We must now show that for each or-definable F: 

(a) (X)U(Q8t)
O
F = U(Qst)F if the limit exists; 

(b) if T is U( Qst) measure preserving and ergodic 
on 0, then T is U(QSt)OF measure preserving and 
ergodic on nO,I' 

Suppose we have shown the above propositions. 
By hypothesis, Op, T, and X satisfy the general con
ditions of Metatheorem 6. Since Tis U(Qst) measure 

preserving and ergodic, U(Qst)Fexists and U(Qst)F = 
U(Qst)F. By hypothesis and (b) the conditions of part 
(4) of Metatheorem 6 are satisfied, and, using (a), one 
gets (with M = X on 0 0,1) 

MOF "PQ8t = U(Qst)F. 

Since this holds for all or-definable F and obviously 
implies MOp"PQstexists, Dt(or, U, Qst) is satisfied, and 

thus U(Qst) is empirically determinable on Ar(o) 
from (Qst). 

To prove (a), one notes that from Eqs. (23), (24), 
and the definition of X 

I 11-1 . 

(X)({;()st)()~, = lim - L U(Qst)o~,(T')JElO 
II-if.; 11 j=O 

if the limit exists. 
Since (T')iElO = Eli> and by Eqs. (52) and (15) 

O~.Ellj = (T'YF if 11 = I and O~.E"j = 0 - (T'YFif 
11 = 0, one has that 

U(QSt)O},(T')iElO = U(Qst)Oj,.E1j = U(Qst)(T')iF. 

Thus (X) = U(Qst)F if the limit exists. 
To prove (b), we first show that OF and T commute. 

From Eq. (52) one has that (OF T(p)(j) = 1 [0] if 
Ti. Tff' E F [¢ F]. Since Ti . Trp = yi+-IT' one has, from 
Eqs. (52) and (19), (OFTf{')(j) = (0J<'T)(j + I) = 
(TO Frp )(j) for all j and (I' in O. 

Thus, for any E E A(Oo,I)' one has 

U(Qst)oJ'E = U(Qst)O~.T'E = U(Qst)T'O~.E 

= U(Qst)O~,E = U(Qst)()~,E, 
and thus Tis U(Qst)op measure preserving. 

To prove the U(QSt)O" ergodicity of T, one must 

show that U(QSt)OR exists and that T is U(QSt)Oi' 
indecomposable. The former follows from the commu
tativity of Ojo' and T for every E E A(OO,I): 

t n-l . 

lim - L U(Qst)O;,(T')' E 
U-dJ n j=-"O 

1 1/-1 

= lim - L U(Qst)(T')iO~.E, 
1t-+ 00 n j=O 

which exists by hypothesis. 
The latter follows from the U(Qst) indecomposa

bility of T. For suppose there were another T-invariant 
set C E A(Oo,l) besides 0 0 ,1 itself and 0 (the empty 
set) with 0 < U(Qst)opC = U(Qst)O~,C < 1. Then, 
using the commutativity of OF and T, we see that 
T'OpC = OpT'C = O~,C or O~,C is aT-invariant 
set in A(O) which is U(Qst) inequivalent to 0 or 0. 
But this contradicts the U(Qst) indecomposability 
of T. QED 

This metatheorem gives sufficient conditions which 
must be satisfied for one to determine the measure on 
Ar(Q) by computing MOp"PQst for each FE Ar(o). 
The questioll arises whether the measure so deter
mined can be extended to the full a-field A(O). By an 
extension theorem14,15 such an extension is possible, 
as AreO) is a field, and the extension is unique. In fact, 
such an extension is possible from the smaller minimal 
field, A;-"(O) over the Enl for n, I = 0, 1, .... In this 
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case not only are elements of A~(a) T-definable, as in 
Ar(a), but it is V'Qst-effectively decidable5 whether or 
not V'Qst, TV'Qst, .•• ,etc., belong to each set inA~ (a). 

The above also suggests a partial answer to the 
following problem: Given any outcome sequence 
V'Qst , (a) can one generate or determine a probability 
measure from it and (b) does £( T, P, V'Qst) hold for 
the measure P so determined? Clearly sufficient 
conditions (using the extension theorem) for an 
affirmative answer to part (a) are that MOI<'V'Qst, 
considered as a function of F, satisfies the axioms of 
a probability measure. That is, for each FE A::,.(Q), (1) 

MOI<'V'Qst exists, (2) 0 ~ MOF1pQ~t ~ 1, (3) 
M0o.-FV'Qst =1 - MOF1pQ .• t, (4) if Fi with i = 1,2, 
... , n are an in A~(a) and are pairwise disjoint, 
then 

and (5) we have countable additivity, i.e., if the Fi 
with i = I, 2, ... are pairwise disjoint, then 

Note that in this case UiF; 1: Ar(Q) is possible even if 
all the Fi are in A~(a). 

Part (b) is a much deeper question whose answer 
would be the subject of another paper. It appears to be 
related to the consistency of such a determination as 
given in the answer to part (a). 

VI. DISCUSSION 

Metatheorem 6 and the associated discussion show 
that, with T = ZF set theory, the definition of T
agreement of theory with experiment is quite power
ful. It includes relations between many limit properties 
of outcome sequences and expectations given by the 
physical theory as well as many other relations. There 
do not appear to be any properties which, on intuitive 
grounds, such a definition should have and which are 
not included in Eqs. (12) and (38). 

In spite of this, it is an open question whether or not 
the definition as given here wiIl ultimate1y have to be 
changed. For example, one might feel t/;lat, from the 
discussion following Metatheorem 6, the definition 
should be limited to including limit properties only of 
sequences. It is possible that one should never require, 
as a test for agreement between theory and experi
ment, that V'Qst(j) = m even if U(Qst)Em; = 1. In 
this case the definition given here would have to be 
altered to include a precise definition of a "limit" 
property. 

Another possibility is that it might be necessary to 

alter or extend T in some fashion. For example, one 
might want T to include a formal language and formal 
theory for the (Qst) as weIl, or one might want to 
include properties of sequences which are expressed 
by formulas which include quantifiers over T-definable 
properties of sequences. At present, little can be said 
about these alternatives other than that the definition 
given here seems sufficient. 

Furthermore, Metatheorems 7 and 8 show that the 
definition given here has some intuitively satisfying 
properties. Intuitively one expects that any outcome 
sequence obtained from an experiment described by a 
product measure is random. This is just what Meta
theorem 7 says. Also for such measures one feels that 
the measure should be determinable from the out
come sequence. This is included in Metatheorem 8, 
since a product measure is ergodic and invariant with 
respect to the shift operator. 

One also notes that the requirement that U T-agree 
with experiment is essential to Metatheorems 6-8. The 
reason is that without this requirement there is no 
reason why the conclusions of the metatheorems 
should hold for 1pQst even if U(Qst) has the properties 
required in the hypotheses. The necessary connection 
is provided by Eqs. (12) and (38), whose validity is a 
consequence of U T-agreeing with experiment. 

As was noted in I, problems arise when one attempts 
to apply the results of this work to quantum mechanics. 
The main problem seems to be whether or not quan
tum mechanics is a theory of the type discussed here.! 
That is, the problem is whether or not, for each 
infinite sequence Qst of single measurements, quantum 
mechanics assigns a measure U(Qst) to the event 
algebra A(Q). As was noted in I, some necessary con
ditions for quantum mechanics to make such an 
assignment are that states which contain an infinite 
number of systems be allowed (unless one can reuse 
systems in subsequent single measurements) and that 
the projection axiom20 or some appropriate general
ization be valid for all measurements. Whether or not 
quantum mechanics can be so extended is, at present, 
open, although some attempts at such extensions have 
been made.21 

It is also to be noted that whether or not a theory is 
of the type U as discussed here is quite separate from 
the problem of how one tells for any experiment (Qst) 
whether or not the single measurements are "the same" 
and are "mutually independent." To see this, one 
notes that Metatheorem 6 does not tell one directly to 
check for agreement between theory and experiment 
by comparing limit empirical means with computed 
expectation values. Rather, it gives ergodic and meas
ure preserving conditions which the measure U(Qst) 
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must satisfy with respect to aT-definable T if such a 
comparison is a test, at the experiment (Qst), of 
agreement with theory. It does not tell one how to 
determine whether or not T and U(Qst) actually 
satisfy these conditions. 

Similarly Metatheorem 8 gives the ergodic and 
measure preserving conditions as sufficiency conditions 
for the empirical determinabiIit~ of U(Qst) from (Qst). 
It also does not tell one how to determine whether or 
not T and U(Qst) actually satisfy these conditions. As 
is well known,15.22 the general problem of deter
mining when a transformation T is ergodic and in
variant with respect to a measure is quite difficult. 

A closely related aspect is that Metatheorems 6 and 
8 give the ergodic and measure preserving conditions 
as sufficiency conditions. The question arises whether 
or not these conditions are also necessary. A proof of 
this appears to be quite difficult. One problem is that, 
in the definition [Eq. (12)] of E(T, P, 1p), the implica
tion is one sided rather than being an equivalence. 
Another difficulty is that the equivalence statements of 
the ergodic theorem (Theorem 2) and the decomposa
bility theorem (Theorem 3) refer to all measurable 
functions on all sets in a a-field, not just the T-de
finable ones. 

Finally, there are some other open questions which 
should be mentioned. First, there is the problem of 
whether theories U with nonempty domains exist. 
Although intuitively it seems that such theories exist, 
one would like to have a proof of this. 

Second, the relationship between this work and 
physics in general, and quantum mechanics in partic
ular, needs more work. Here, a general class of 
theories was considered, and some properties were 
defined and discussed as necessary conditions for any 
theory in the class to be valid. It was not necessary 
to consider the details of any theory other than the 
properties of the measure which it generated for each 
experiment. Thus, in this respect, this work is appli
cable to any empirical theory of the type discussed, not 
just physics. 

However, suppose one takes the epistemological 
viewpoint that physical reality, in essence, is defined 
by the basic aspects of the knowledge acquisition 

process and that a goal of this process is the construc
tion of a comprehensive physical theory which, among 
other things, must agree with experiment. In this case 
it is clear that the subject matter of this paper is 
closely related to physics at a very basic level indeed. 
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The properties of general involutional matrices satisfying the equation Am = kl, k = const, are 
studied. Generating equations for the induced representations of an arbitrary (1/ X n) matrix are ex
plicitly written down. The special case when n = 3 is discussed in detail. It is shown that the conditions 
which make an arbitrary (n x n) matrix involutional leave any of its induced representation involutional. 
It is further shown that an involutional matrix in its self-representation can be expanded in the basis of 
generalized Clifford algebra with coefficients which are the generalized hyperbolic functions. Eigenvalues 
of induced matrices, in particular when they are involutional, are calculated. 

1. INTRODUCTION 

General involutional transformations which include 
homographic projective transformations (apart from 
sign) have wide applications in physics. l These are 
matrices satisfying the relation Am = kI, k = const, 
of which a particular case is the set of Pauli matrices. 

The case when the set of matrices A obey the 
generalized Clifford algebra C': (GCA) defined by 

eie; = OJe;ei , i <j, i,j = 1,"', n, (1.1) 

e;' = 1, (1.2) 

where OJ is a primitive mth root of unity, has been 
studied exhaustively. The general mathematical formu
lation has been made by Morinaga and Nono,2 
Yamazaki,3 and Morris,4 while its relation to physics 
through the study of their specific representations 
has been made systematically by Ramakrishnan5 and 
collaborators. l The present investigation, however, 
is on involutional matrices which satisfy Eq. (1.2) and 
mayor may not satisfy Eq. (1.1). In this sense, Eq. 
(1.2) alone envelops a wider class of matrices than 
those implied by both the Eqs. (1.1) and (1.2). The 
case when m = 2 has been studied in detail by Kim6 

recently. The object of the present work is the study 
of general involutional matrices. 

When m = 2, an involutional matrix has the general 
form 

(1.3) 

except for trivial constant matrices where a, b, and c 
are arbitrary parameters. If this is regarded as an 
element of the general linear group in two dimensions, 
the matrix representation of A(2) as a transformation 
on a basis set of homogeneous polynomials of qth 
degree in two variables will yield a (q + 1) x (q + 1) 
involutional matrix with three arbitrary parameters. 

This is just the qth induced representation of A(2).7 

Since the above procedure can be recognized as a very 
simple method of induction and since induced matrices 
are a special class of invariant matrices, the property 
of involution is carried through for an arbitrary 
n X n matrix.8 

In this paper we study the following: 

(1) We show that the conditions on the 2 x 2 
matrix A(2) such that the [A(2)]m = kI are sufficient to 
make the qth induced matrix of A(2) obey the equation 

(1.4) 

Of course, this is not surprising since induced matrices 
are invariant matrices. 7 

(2) We set up generating equations for the qth 
induced matrix of a 3 x 3 matrix A(3). In particular, 
if the matrix A (3) is involutional in the sense [A (3)]'" = 
kI, the qth induced matrix A~3) satisfies the equation 

(1.5) 

(3) The above procedure incidentally makes ob
vious the method of writing down the generating 
equation for the qth induced matrix of an arbitrary 
n x n matrix A(>I). A particular case of interest is 
when A(n) is involutional. 

(4) The special case of a 3 x 3 matrix A(3) 

satisfying [A(3))3 = 1 is discussed in detail. It is shown 
that it can be expanded in the basis of the generalized 
Clifford algebra C: with coefficients which are the 
generalized hyperbolic functions. 

(5) We calculate the eigenvalues of the matrix 
belonging to GL(n) obtained through induction, and 
specialize it to the case of involutional matrices. 

In Appendix A, we summarize the relevant informa
tion on the generalized Clifford algebra. In Appendix 
B we summarize the properties of hyperbolic and 

377 
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trigonometric functions of order n. In Appendix C we 
demonstrate in a simple case the simplicity achieved 
in finding the arbitrary power of a matrix when it is 
expanded in the basis furnished by the roots of the 
unit matrix. 

2. INVOLUTIONAL TRANSFORMATIONS 
OF GL(2) 

The complete set of qth-degree polynomials in two 
variables x and y, 

r = (x, Y), 'JI = 0, 1, ... , q, (2.1) 

is taken as the basis set. An element R(B) of GL(2) is 
given by the general 2 X 2 matrix (nonsingular) 

R(2) = [: ~J E GL(2), ad - be :F 0, (2.2) 

where a, b, e, and d are arbitrary parameters. The 
(q + I)-dimensional representation R~2) is furnished 
by the qth induced matrix of R(2) and is given by6 

(2.3) 

The explicit form of R~2) is obtained by developing 
Eq. (2.3) in power series, and one gets 

Now, an invariant matrix Aq of a matrix A is defined 
by ~he relation7 

(2.5) 

where Aq is the matrix whose entries are polynomials 
in the elements of the matrix A, from which it easily 
follows that 

if 

where Aq is of dimension (q + 1). 

(2.6) 

(2.7) 

Therefore the conditions on the four parameters, of 
the 2 x 2 matrix, in order that Eq. (2.7) is satisfied, 
automatically leave A~B) involutional. When k = l, the 
involutional matrix A(2) involves only two parameters 
since in this case a + d = 0 and be = 1 - aI, and 

thus it can be expressed as 

A(2)(O) = O'zR(O), (2.8) 
where 

(2.9) 

and R(O) is the rotation matrix in two dimensions, with 
o defined by 

(be)l = sin O. (2.10) 

3. GENERATING EQUATIONS FOR THE GENERAL 
INVOLUTIONAL MATRICES 

By an exactly similar procedure as that utilized for 
the case of m = 2, we define the qth-degree homo
geneous polynomials in three variables x, y, and z as 

Fat,aa(r) = xq-IZt-alyalzaZ, (3.1) 

where the nonnegative integers OCl and OC2 obey 

OCl + OC2 ~ q. (3.2) 

The linear homogeneous transformation R(3) in 
three dimensions is given by a 3 X 3 matrix 

(3.3) 

where the ai ; are arbitrary parameters. The qth 
induced matrix of R(3) involving nine parameters is 
then simply given by the equation 

F(al lZa)(R(3)r) = (aoox + aOlY + a02z)Q-at- aa 

X (alOx + anY + a12z)at 

X (a20x + anY + a22Z)al 

= I [R~3)]( .. ,al)(""a.,)F(a"al,)(r), 
(a,'at') 

r = (x, y, z), (3.4) 

where the matrix R~3) is labeled by the different 
partitions of the nonnegative integers (oc{, IX!) and 
(OCI , IX2) satisfying 

(3.5) 

Hence the dimension of R! is simply given by the 
number of solutions (OCl' OC2) of Eq. (3.5), which in 
this case is equal to (lit!). 

Obviously, R~3) reduces to R(a) when q = 1. For 
convenience, we can choose the partitions in decreas
ing order in OCl for a given value of IXl + IX2 and 
increasing order in (OCI + OC2) for labeling the matrix. 

The simple power series expansion of Eq. (3.4) 
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yields an explicit expression for R~3), viz., 

X (IX~ ~ IX~ - 1-'1 - 111) 
1X2 - 1-'2 - "2 

X (a01a20)"1 (a02a21)'" 
aOOa21 a01a22 

X (a 11a2O)"1 (a 12a21\"'. (3.6) 
a10a21 au a2J 

This may possibly be related to the Lauricella func
tions.9 

The above procedure of generating the induced 
matrix can be easily generalized to the case of an 
arbitrary n x n matrix R(n) given by 

aoo aOl aOn-1 

a10 au a1n-1 

R(n) = E GL(n). 

an-1.0 a,,_1.1 an- 1.n- 1 
(3.7) 

In this case we define the qth-degree polynomials 
F(<11 ..... ""_I)(r) in n variables Xl, ••• , X" , 

:En - 1 

F("I ..... «"_I)(r) = x1- i-I "i X~\ ... , X~"-I, 

r = (Xl' ... , X,,), (3.8) 

with the nonnegative integers lXi satisfying the partition 
equation 

(3.9) 

The qth induced representation of R(n) is given by the 
matrix R~ ,,) defined by 

F "U" ."n_l(R(")r) 

= (aOOXl + ... + aOn- 1Xn )q- i-I "i IT 1 a;kxk+1 
1:n - 1 ,,-1 (,,-1 )"1 

;=1 k=O 

= 1 [R~")J("I""'''n_l)(,,{.· ... a:._I,)F(''I'.''·.u._I,)(r), 
("1' ......... -1·) 

(3.10) 

where the matrix is labeled by the distinct partitions 
given by Eq. (3.9). We can choose them in the 

decreasing order (lXI' .•• , IX n_1) for a given value of 
(1X1 + ... + IXII-J S q. 

The dimension of R~") is just given by the number 
of solutions of the partitions equation (3.9), which 
is simply equal to ("+:-1) = (";'!.11). 

Let us now specialize the method of induction to 
the case of involutional matrices satisfying the 
equation 

[R(lI)l''' = kl. (3.11) 

As in the case of (2 x 2) matrix, the conditions on 
R(II), so that it satisfies Eq. (3.11), leave its qth induced 
representation R~") to obey 

[R~")]'" = kqI. (3.12) 

This follows directly from the property of induced 
matrices, which form a special case of invariant 
matrices satisfying Eq. (2.5). The conditions on R(II) 

implied by Eq. (3.11), when m = n, are simply given 
by the characteristic equation of R(II): 

Tr R(II) = Tr [R(n)]2 = ... = Tr [R(II)]/I-1 = 0, 

and 
det R(lI) = (-1 )"k. (3.13) 

Let us consider the special case of a 3 x 3 matrix 
satisfying the equation 

[A(3)]3 = 1. (3.14) 

The eigenvalues of A(3) are then given by the cube 
roots of unity (1, ro, w2). As in the case of A(Z), A(3) 

can be reduced to the form 

F(3)(0) = V A(3)V-1 = f~3) (l)f13) f~3) , (3.15) 
[ 

f(3) (l)f~3) f(3)] 

(l)2f~3) f~3) (l)2f13) 

where the f~3) are the generalized hyperbolic functions 
of order three with argument (AO), with A = 
exp (i-7Ti) = (l)l, w being a primitive cube root of 
unity. It is inessential to compute the matrix V whose 
existence can be inferred from the fact that both A (3) 

and P(3) are nonsingular and satisfy Eq. (3.14). The 
!'s are functions of the entries of the matrix A(3). 

They satisfy the determinantal condition10 

fi3) f~3) f~3) 

f~3) fi3) f~3) = 1. (3.16) 

f~3) f~3) fi3) 

The f~3) are related to the trigonometric functions of 
order three k~3' (see Appendix B) through the relation 

k?)(O) = A(1-t)fl3)(JdJ). (3.17) 

F(3)(O) can be expressed as 

P(3)(O) = B(3)R(3)(O), (3.18) 
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where 

W" ~ [~ : ~.] (3.19) 

and R(3)(O) is the matrix 

(3.20) 

The interesting point is that R(3)(O) can be expressed as 

3 
R(3)(O) = I f?)(AO)Q;-1 (3.21) 

i=1 
3 

= I Ai
-

1k:3 )(O)Q;-\ (3.22) 
i=1 

where the matrix 

Q, ~ [~ 0) 0] o 0)2 

o 0 
(3.23) 

is a base element of the generalized Clifford algebra 
C: (see Appendix A). The determinantal condition 
(3.16) can also be written as 

3 3 

det I f?)(;'O)p;-1 = det I k:3)(O);.i-1p;-1 = 1, (3.24) 
i=1 i=1 

where the matrix 

P, ~ [~ ~ !] (3.25) 

is the other base element of C;. 
The above discussion can now be carried for an 

arbitrary (n X n) involutional matrix 

[A(n)]n = 1, (3.26) 

which can be transformed to the form 

where 

w~J ... 

(3.28) 

andll 

R(n)(o) = .i f:n)(;'O)Q~-1 
i=1 

= i ;.i-1k~n)(O)Q~;-t, ;. = exp (n- I7T;), (3.29) 
i=l 

where the matrix 

Q. ~ 'I; 
0) 0 

w~-J 0 0)2 

0 

0 0 

~ = 1 for n odd 

= ;. for n even, (3.30) 

is an element of the generalized Clifford algebra Cr. 
The determinantal condition on the hyperbolic and 
trigonometric functions of order n is simply given by 

n n 

det If:n)(;.o)p~-1 = det I ;'i-1Mn)(o)p~-1 = 1, 
i=1 i=1 

where the matrix 

o 0 1 ... 0 
p = 

[

010",0] 

n 0 0 0 1 

1 0 0 0 

(3.31) 

(3.32) 

is the other base element of Cr. The f's are functions 
of the entries of the matrix A(n), and the explicit 
relation is of little concern to us. The existence of 
yIn) is again guaranteed by the fact that A(n) and 
F(n)(O) are both nonsingular and satisfy Eq. (3.26). 

4. EIGENVALUES OF R~n) AND A~n) 

In this section we first calculate the eigenvalues of 
the qth induced matrix R~n) of the matrix R(n) given by 
Eq. (3.10) and specialize to the case when R~n) is 
involutional. The calculation is based on the simple 
theorem that if the matrix R(n) is triangular, then its 
induced matrix R~n) is also triangular in shape 
similar to R(n). This theorem has been proved by 
Kim6 for n = 2, and it is true even in the general 
case. Consider for example the case of n = 3. If R(3) 
has the form 

(4.1) 

it follows from Eq. (3.4) that 

[R~3)]aa' = 0, 

unless IX~:S 1X2 and IX~ + IX~ :S IXl + 1X2' where IX = 
(1X1' 1X2) and IX' = (IX~, IX~). These are simply the 
conditions for the matrix R~3) to be triangular in shape 
similar to R(3). It is not hard to prove the same result 
for any n. 

In fact, it follows directly from Eq. (3.10) that if the 
matrix Rn is triangular, then, since au = 0, i < j, 
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we have [R;]~~, = 0 unless 

n-l n-l 
LlXi~LIX~, k=I,···,n-1. (4.2) 
i=k i=k 

These are simply the conditions for R~n) to be tri
angular and similar in shape to'R~n). Equation (4.2) 
incidentally suggests a more convenient labeling of 
R~n) by (PI' ... , Pn-l) satisfying 

o ::;; Pn-l ::;; ... ::;; PI ::;; q, 

PI + P2 + ... + Pn-l ::;; (n - l)q, 
where 

n-l 

pj = L lXi' j = 1,' .. , n - 1. (4.3) 
i=j 

The generating equation (3.10) for the induced matrix 
R~n) then simply becomes 

g (~:ajkXk+lr-pi+l = t, [R~n)]pp.Fp.(r) (4.4) 

with 

Po = q, Pn = O. (4.5) 

Equations (3.10) and (4.4) are completely equivalent. 
Now it is always possible to transform the matrix 

R(3) into the triangular matrix R(3)T, 

[

El 0 0] 
R(3)T = ~l E2 0 , 

~2 ~3 E3 

(4.6) 

through a suitable unitary transformation. Here the 
~'s are constants, and the E'S are the eigenvalues of 
R(3). Substituting Eq. (4.6) in Eq. (3.6), we obtain 

x L (1X1) (, 1X2, ) (IX~ + ~~ - y) 
v Y 1X1 + 1X2 - Y 1X2 

X (E2Y(~1)«1-V(~2)"2-«1'-«~'+V(~3)«1'-V, 

~l' ~2' ~3 y6 0, 

The trace of R~3) is given by 

Tr R~3) = 1/[(El - E2)(E2 - E3)(El - E3)] 

X [EIE2(E~H - E~+l) + E2E3(E~+l - Eg+l) 

+ E3El(Eg+l - Er+l)], El y6 E2 y6 Ea, (4.10) 

= (q ; 2)E
q

, El = E2 = Ea = E. (4.11) 

The above formula can be immediately generalized to 
yield 

(4.12) 
where 

6. = EIE2 ... En (4.13) 

is the determinant of R(n). Further, we have 

The eigenvalues of R~n) are given by 

(4.15) 

Another interesting property of R~n) which can be 
easily verified from Eq. (3.10) is that 

n-l oRen) 
'" a .. _Q- = qR(n) k " ':t q . 

i.;=O Vai; 
( 4.16) 

The above discussion can now be specialized to the 
case of the general involutional n x n matrix A (n). The 
eigenvalues of A(n) are given by 

(4.17) 
In this case we have 

~1 = ~2 = ~3 = O. (4.7) so that (4.18) 

The eigenvalues of R~a) are then given by 

The determinant of R~3) is given by 

det R~3) = II Er-«1-«·E~lE:2 
«1.(%2 

021+«2$'1 

e+2) (q+2) 
= (ElE2Ea) 3 = d 3 , 

where d denotes the determmant of R(3) 

(4.8) 

(4.9) 

Tr A~n) = 0 for q y6 0 mod n 

=(-I)V for q=Omodn. (4.19) 

The determinant of A~n) is given by 

(4.20) 
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APPENDIX A 

We summarize here the relevant details of the 
generalized Clifford algebra.2- 4 The equation 

n (n)m .2 x:' = .2 !XiXi 
i=l i=l 

is satisfied if !X's obey the relations 

ai!XI = wala;, i <j, i,j = 1,···, n, 

wm = 1. 

The set of elements defined by 

m 

II a,?i . , 
i=l 

where the integers Pi satisfy 

(AI) 

(A2) 

(A3) 

The n functions 

1 n . ii = - .2 w(l-.lm exp (wmx), i = 1, ... , n, 
n m=l 

w = exp C;i) , (Bl) 

are called the hyperbolic functions of order n. The h 
satisfy the differential equation 

(~ - l)Y = o. 
dxn 

(B2) 

h' ... ,In form a linearly independent set of solutions 
of Eq. (B2) and their Wronskian is equal to unity. 
From the definition of Ii follows that 

exp (wmx) = i w(l-tlmj;(x, n), m integer. (B3) 
i=l 

From (B3) it follows that 

Equation (B4) can also be written as 

det i jipi-l = 1, 
i=l 

(B4) 

(BS) 

o ~ Pi ~ m - 1, (A4) where the permutation matrix 

is linearly independent. They are mn in number. 
Obviously they form a vector space of dimension mn, 
and with the product defined by Eq. (A2) they form 
an associative algebra called the generalized Clifford 
algebra C::,. The case when m = 2 can be realized to 
be the Dirac Clifford algebra. The matrix representa
tion of a's has been obtained by using the Dirac 
procedure by Morinaga and Nono' and has also been 
obtained by Ramakrishnan, Santhanam, and Chand
rasekaran12 by using vector space methods. The 
results are: C::' for n = 2'11 has a faithful representation 
by the matrix ring mV x mV; when n is odd, it has 
again the matrix representation in terms of (mY x mY)
dimensional matrices, which, however, breaks up into 
m sets of inequivalent matrix rings mY x mY. That is, if 
the set {P} furnishes a representation of dimension 
mY X mV, then wi{P}, i = 1, ... , m - 1 also furnish 
inequivalent representations of the same dimension, 
w being a primitive mth root of unity. The case when 
m = 2 is, of course, very well known.13 

APPENDIX B 

We summarize here some general properties of the 
trigonometric and hyperbolic functions of order n.10 

[0 I 0 

!l 
o 0 

p= o 0 0 

1 0 0 0 

(86) 

is a base element of C;. 
The functions 

k;(x, n) = )..l-'li().X, n), i = 1, ... , n, 

). = exp (7Ti/n), (87) 

are called the trigonometric functions of order n. 
They are the solutions of the differential equation 

(~ + l)Y = o. 
dxn 

(B8) 

From (B7) it is clear that 

1 n . 
k;(x, n) = - I ).(1-.1 (2m+ll exp ().2m+lx) (B9) 

n m=l 

and 

i! (~/1-i)(2m+llKi(X») = del i~l )..(i-l)KiQi-l = 1. 

(B10) 
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APPENl)1X C 

We demonstrate the use of the expansion of a 
matrix in the basis of the roots of unit matrix to find 
its arbitrary power. The problem of finding the 
arbitrary power of an n X n matrix has already 
attracted the attention of many people.u We believe 
that the expansion of a matrix in terms of the roots of 
the unit matrix will simplify the problem very much. 
Since we have the results only for the case of a 2 x 2 
matrix, which is veryweU known, we content ourselves 
by just giving the results. Any 2 x 2 matrix X can be 
uniquely expanded as 

X= 101 + I· 0, (el) 

where the O"s are the Pauli matrices forming the alge
bra e: along with the unit matrix, If the matrix X has 
the form 

then 

10 = i(a + p), 13 = i(a - d), 

11 = !(b + c), 12 = W(b- e)1. 

Then it is easy to see that 

xm = HUo + l)m + (10 - 1)111) 

(e2) 

+ ~ (I ; 0") [(10 + 1)111 - (10 - 1)1IIJ, (C3) 

where 

(e4) 

Equation (e3) can also be written as 

xm = Um(p, q)X + qUm- 1(p, q)l, 

p = (a + d) = Tr X, and q = ad - be = det X, 

(e5) 

where the U's are the Luca's polynomials given by 

1 
Um(p, q) = ! 

2m(p" _ 4q) 

x Up + (pI _ 4q)t]m 

_ [p _ (p" - 4q)t]'It]. 

Of course, there are methods of Sylvester using the 
explicit eigenvalues of X and the method of using 
the characteristic equation of X. But we hope that 
the expansion in terms of the roots of unit matrix 
can be much simpler, as in the case of m = 2 
demonstrated above. The simple reason is that the 
(nontrivial) roots of the unit matrix are traceless 
matrices, and hence their characteristic equation is 
much simpler. The details for m > 2 will be 
published elsewhere. 
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A method is developed for construction of a complete basis for a class of finite-dimensional irreducible 
representations of the simple Lie algebra F4 and for calculation of matrix elements of F.,-generators 
relative to that basis. The algebra F. is embedded into A.s , and results of Gel'fand and Tsetlin concern
ing that algebra are used. 

I. INTRODUCTION 

The present paper is the second in a series of three 
in which a method is developed for construction of a 
complete basis in any finite-dimensional representa
tion space of any exceptional simple Lie algebra and 
for calculation of matrix elements of representations 
relative to that basis. In the first paper of the series l 

(hereafter referred to as T) the irreducible representa
tions (IR's) of the algebra G2 were considered, and 
the general idea of the whole method was outlined. 
Section II of I contains several conventions and 
should be considered an integral part of the present 
paper as well. In what follows we refer to equation 
( ... ) of I as (I' .. ). 

Here we study the problem for a class of IR's of F4 • 

The algebra F4 is embedded into an algebra A 25 , and 
results of Gel'fand and Tsetlin2 concerning that 
algebra are used. This is precisely the way we pro-

ceeded in I. Unlike the case of G2 , however, an addi
tional difficulty arises here.a A single embedding of F4 
into one algebra A" does not suffice to treat all I R's 
of F4 • One would also need, for instance, an embed
ding F. C A5l and others. The rather high rank of the 
containing algebra A tl in these cases necessitates a 
modification of our approach to the problem. There
fore, the I R's of F4 not included in the present work 
[cf. condition (6) below], as well as all the I R's of 
algebras £6' £7' and £8' will be considered elsewhere 
in a way which is, in principle, the same but which in 
some situations is not as conveniently applicable. 

In Sec. II, the embedding F4 c A 25 is described. 
Section III contains the state labeling lemma and the 
method for calculating matrix elements of F.-genera
tors. An example of matrix element calculation is 
shown in Sec. IV. The last section is devoted to some 
observations about the method. 

II. EMBEDDING OF F4 INTO A25 

First we assume all the conventions and notations of Sec. II of I. We introduce a basis {7"j}, i = I, 2, 3, 4, 
in the root space R(F.) by 

7"1 = 2(11 + 3(12 + 4(1a + 2(14' (11 = 27"1 - 7"2' 

7"2 = 3(11 + 6(12 + 8(1a + 4(1., (12 = -7"1 + 27"2 - 27"3, 

7"a = 2(11 + 4(12 + 6(1a + 3(14' 

7"4 = (11 + 2(12 + 3(1a + 2(14' 

(1a = -7"2 + 27"a - 7"4, 

(14 = -7"a + 27"., 

where the vectors (1i are simple roots of F4 • Equations (I) constitute a particular case of (11). 

(1) 

The embedding F. c A25 is specified by a projectionf* of the 25-dimensional real vector space spanned by 
simple roots of A 25 onto the 4-dimensional root space of F4 • 

According to a general method,· the projectionf* is found when the weights 

and 

Ml = 7"4, M2 = 7"a - 7"., 

M4 = 7"1 - 7"2 + 7"a, Ms = 7"1 - 7"3 + 7"., 

M7 = 7"1 - 7"4' Ms = -7"1 + 7"2 - 7"a + 7"4' 

MlO = -7"2 + 7"3 + 7"., Mu = -7"2 + 27"a - 7"4' 

MIa = M14 = 0, 

Ma = 7"2 - 7"3, 

M 6 = -7"1 + 7"a, 

M9 = -7"1 + 7"2 - 7"4' 

M12 = -7"a + 27"4' 

M1a+k = -MIa-HI for k = 1,2,'" , 13, 

384 

(2) 
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of the lowest-dimensional representation of F4 are numbered as in (2) and inserted into Table I of Ref. 4. 
From that table, one has 

and 

f*(vJ = 74' f*(vJ = 71 + 7a + 74' 

f*(vJ = If*(vu) = 7a, f*(v7) = 271 + 7a, 

f*(va) = tf*(v,) = 7~a. f*(vs) = 71 + 7S + 74' 

f*(vJ = 71 + 7a, 

f*(v5) = 271 + 74' 

f*(VIO} = 7S + 7a + 74' 

f*(V12} = f*(VlS} = 27S + 274 

f*(V13+k} = f*(V13-k) for k = 1,2, ... , 12. 

Consequently, a vector M = I~~1 bkvk of the root space of AS5 becomes, after the projection f* , 

f*(M) = N = 71(b, + 2bs + b6 + 2b7 + bs +b1S + 2b19 + bso + 2b21 + bss) 

+ 72(ba + bs + 2b, + b10 + b16 + 2b17 + blS + b2S) 

+ 7a(bs + b, + b6 + b7 + b10 + 3bll + 2b12 + 2b13 + 2b14 

+ 3b15 + b16 + b19 + b20 + b22 + b2J 

(3) 

+ 7,(b1 + bs + be + bs + b10 + 2b12 + 2b1a + 2b14 + b16 + blS + bso + b21 + bs,,). (4) 

Recalling Theorem 0.11 of Ref. 5, one finds that a Gel'fand pattern (g) [cf. (13), where n = 25], which is 
a vector of a representation space R(cI>(As5» and which has its Ass-weight given by (15), also has a well-defined 
F,-weight. It is obtained when (15) is inserted into (4). Because F, c A2s , one has R(cI>(A25» == R(cI>(F,», 
where cI>(F4) is the representation of F, (in general, reducible) obtained when the IR cI>(A2s) is restricted to the 
subalgebra F, of A25 . 

Suppose we are given an IR '¥(FJ and we want to construct a basis in its representation space R('¥(F,». 
For that, we use the Gel'fand patterns of an IR cI>(A25)' Obviously, this is possible only if R('¥) s;; R(cI» , 
which implies 

(5) 

Because the latter inclusion may hold for several cI>(As5), it is natural to choose cI>(A25) as "small" as possible. 
More precisely, our choice is made by 

Lemma 1: Let '¥(F,) and cI>(A25) be IR.'s ofF, and AS5 with the highest weights 

and 

respectively. Then: 
(a) cI>(A2s) ;:, '¥(F4); 

, 
N" = Iak7k' al ~a3' 

k=1 

(b) if also Q(As5) ;:, '¥(F,), then the dimension of Q(Ass) is not lower than that of cI>(A 25); 

(c) patterns (13) form a basis in R(cI» provided that 

and 
mii == 0 for any i = 5,6, ... ,26. 

The proof of Lemma 1 is essentially the same as that of Lemma 1 of J. 

(6) 

(7) 

(8) 

For the rest of the paper, we assume the restriction a1 ::::;; a3 on the coordinates of N" in (6), which eliminates 
from our consideration a class of IR's of F,. In the last section, we discuss how to treat this class using different 
restrictions on the coordinates of the highest weight. 
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According to (c) of Lemma I. we can use Au-patterns for construction of the basis in R('Y) that are of the 
form 

aB + as + a. DB + as a1 + aB al 0 o 
ml,21i m2,26 m a,21i m',ali 0 o 

o 
(g) = (9) 

ml.l 

The Au-weight of (9) is given by (15). Its F,-weight N follows from (15), (4), and (8): 

N = Tl(- !m".3 + i (2mk,5 - 2m" •• + 2mk.7 - m" •• - mU7 + 2m".I. - 2m" •• + 2m".21 - m".23» 
1:=1 1:=1 

+ T2(- Im".2 + 2,imk,3 + I(-m".& - m1:.7 + 2m1:.8 - m".ll 
1:=1 1:=1 10-1 

- mk•16 + 2mk.17 - mk.l1 - mk.22 + 2mk,23 - mk.aJ) 

+ Ta(-mll + 2Imk.2- 2,im",3 + I(2mk,. - 2mk,6 + m1:,6 + m1:,7 - mk,8 - m" .• - muo 
1:=1 10-1 10=1 

+ 3m1:.11 - mk,II - mk,lt + 3mk ,16 - m",18 - mk,17 - mk,18 

+ mk,18 + m",IO - 2mk,21 + 2mk,22 - 2mk.23 + 2mk,2' - mk.u» 

+ T4(2mll - Imk,2 + I( -mk,4 + mk,6 + mk,6 - 2mk,7 + 2mk.8 - 2mu + 2mk,l0 
10=1 1:=1 

- 3mk,ll + 2mk.12 + 2mU& - 3mk,l1i + 2mU6 - 2mk.17 + 2mk,18 - 2mk,11 

+ m",2O + mk.ll - m1:,22 - m",u + 2mk,26 - 2al - 3az - 2as - a,»). (10) 

m. LABELING STATES AND CONSTRUCTION OF REPRESENTATIONS 

Let us write the generators of the subalgebra F. of A21i as linear combinations of As5-generators li,i and 
It,t - Ij,j' i '# j, of Gel'fand and Tsetlin.2 The lowering generators6 corresponding to negative simple roots of 
F4 are 

E_P1 = 16,. + 18,5 + 11,7 + 120,18 + IS2•19 + 1232.1' 

E_p, = lu + 110•8 + In,. + 118,18 + 119,17 + 124•2a , 

E-Pa = 2-1[/3 ,11 + 15,& + 18,8 + 112,10 + a(l13,n + 118•1S> + b(lIUl + 118,1.) + 117,15 + 121 ,19 + 123.22 + 125•u ], 

E_p. = 2-1[1.,1 + 17•5 + 1'.8 + In •10 + b(l18.12 + 115,13) + a(ltt,12 + 115,1.) + 117,16 + 118,18 + 112•20 + 126•15), 

(11) 

where a = (l + .../!)1 and b = (l - .../£)1, as can be verified, for instance, by comparing nonzero commutators 
of E_p; with the system of roots of F,. Indeed, the lowering generators corresponding to nonsimple roots of 
F, are proportional to commutators of E_p;, i.e., 

[E_p;, E_IJ) ,..., E_IJ;_pj' (12) 
Thus one gets the generators 

E_P1- P, = 16 ,3 - 110,6 - 111,7 + Izo ,16 + 122•17 - l u .21 , 

E-fls-fla = ,2-1[14,2 - lIi,3 + 110,6 - 112•8 - a(/13 ,9 - 118,13) 

- b(/14 •• - 118•1J + 118•16 - 121 ,17 + lu.22 - 115 ,23], 

E_pa- p• = 2-1[/3,1 - 17•4 - 1',6 + (a - b) (/13 ,10 - 117 ,13 - 114.10 + 117,14) 

- 115 ,11 + 116•12 + 121 •18 + 123•20 - 128,24], 
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E-P.-Pa-Pa = 2-1[/8,2 - I s ,3 - 1 16,4 + 112 ,5 + a(/13,7 + 1110 ,13) 

+ b(/a,7 + 1 110 ,14) + 1 22 ,15 - 1 23 ,17 - 1 24,19 + 1 25 ,21], 

E_p._p._P, = 2-1[/u + 17 ,3 - 1 11 ,6 + 115" - (a - b)(/13,s + 1 19,13 

- 1 14,8 - 1 19 ,1') + 1 1S ,12 - 121 ,16 + 124 ,20 + 126,23], 

E-P.-2P3 = -/5,2 - 1 12 ,6 + 116" + 1 18 ,11 - 121 ,15 - 125 ,22, 

E-P.-Pa-P.-P, = 2-i [/6,1 + 111 ,4 + (a - b)(/13,5 - / 22 ,13 - 1 14 ,5 + 122 ,14) 

+ 1',3 - 115 ,7 + /20,12 - / 2,,18 - / 23 ,16 - / 26 ,21]' 

E-Pl-P.-2P. = -/s,2 + 112 ,4 + 1110 ,11 - 1 16 ,7 - 123 ,15 + /25 ,16, 

E-P.-2Pa-P, = 2-i [ -/5,1 + 17,2 + /18 ,10 + 116,s + b(/13 ,6 - 121 ,13) 

+ a(/a,6 - 121 ,1J - 1 17" - 1 19 ,11 - 125 ,20 + 1 26 ,22], 

E-Pl-P.-2P3-P. = 2-i [ -b(/13" + 123,13) - a(/14,4 + 123,14) - 18.1 - 116 ,5 

+ 1 9,2 + 1 17 ,7 + /20 ,10 + 125,18 - 122 ,11 - / 26 ,19]' 

E-Pl-2P.-2/1a = 1 10 ,2 + 1 12 ,3 + 120 ,9 + 1 18 ,7 + /25 ,17 + /2,,15, 

E-P.-2Pa-2P, = 17 ,1 - 1 17 ,8 - / 19 ,10 - 121 ,12 - 115 ,6 + 126 ,20' 

E-Pl-Pz-2fla-2P, = 1 9,1 + 1 15 ,4 + 1 17 ,5 - 1 22,10 - / 23 ,12 - 126 ,IS, 

E-fl.-2Pz-2fla-P, = 2-1[/10 ,1 + 1 18 ,5 + 120 ,8 - 1 11 ,2 - b(/13 ,3 - / 24 ,13) 

- a(/14,3 - 124 ,14) + /25•16 - 1 19.7 - 122.9 - 126.d, 

E-P.-2P.-2Pa-2P, = 115 •3 - 122 •8 - 1 11 •1 - / 26 •16 - 1 19•5 + 1 24•12 , 

E-Pl-2flo-3Pa-P, = 2-1[(a - b)(/13.2 + /25 .13 - 1 14 •2 - / 25 •14) + 1 18•4 + 120,6 

- 1 12•1 + 124•11 - / 26•15 + 121 •7 + 123•9 + 1 16•3], 

E-Pl-2PI-3fla-2P, = 2-i [ -/17,3 + 1 15•2 - 1 l9 .4 - 122•16 + 124.10 + a(/13,1 - 1 26,13) 

+ b(/14.1 - 12uJ + 121.5 + 123 •8 - 125•12], 

E-fll-2Pz-4fla-2P, = -/17,2 + /21 •4 - 1 26•11 - / 16 .1 + 123 ,6 - / 25 •10 , 

E-Pl-3Pa-4fla-2P, = 1 19•2 + /18 ,1 + 121 •3 - 124 ,6 - 125 •8 - 126•9 , 

E-2fll-3flz-4fla-2P, = -(/20•1 + 122•2 + 123•3 + 124 •4 + 125 .5 + 126•7), 

387 

(13) 

The raising generators Ey , where y is one of the positive roots of F4 , are obtained from E-7 by permutation 
of the indices of each Ii,; . 

The generators H y , elements of the Cartan subalgebra of F, , are found as6 

In particular, 

Hpl = lu + Is,s - 16,6 + 17•7 - 18,8 - 19,9 + 11S.18 + /19 •19 - 1 20•20 

+ /21 •21 - 122 •22 - 123 ,23, 

Hfll = 1 3,3 - lu + 1 8•8 + I", - /10.10 - 1 11 •11 + /16•16 + /17 ,17 

- / 18 ,18 - / 19•19 + 123•23 - 124 •24 , 

HPa = l(l2.2 - 1 3•3 + lu - Is,s + 16•6 - 18•8 + 1 10•10 + 2/11 •11 - 112•12 + 1 15,15 

- 2/16 .16 - 1 17 .17 + 1 19 •19 - 121 •21 + 122 .22 - 123 •23 + 124•24 - 125•25), 

H fJ, = 1(11.1 - 12 •2 + 15 •5 - 17 •7 + I S •8 - 19 •9 + 110•10 - 111 •11 + 2/12•12 

- 2/15 •16 + 116•16 - 1 17 .17 + 118 .18 - 1 19 •19 + 120 •20 - 122 •22 + 125 •25 - 126•26), 

(14) 

(15) 

All representations of Au-generators are known,2 in particular, the representation Cl>(A25) of Lemma r. 
Because of the one-to-one correspondence between an element of an algebra and its representation, one is 
free to consider Ii.; and Ii.; - I;.; as A2s-generators in the representation Cl>(A 25). Consequently, (I I), (13), 
and (15) are generators of Cl>(F,), 
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Our solution of the state labeling problem for the class (6) of IR's of F4 is given in 

Lemma 2: Let'Y(FJ be the IR of F4 with the highest weight (6). Then a complete basis in the representation 
space R('Y) consists of the vector 

a2 + a3 + a" a2 + as al + a2 al 0 0 

a2 + a3 + a4 a2 + a3 al + all al 0 0 

(gJ= (16) 

a2 + a3 + a" a2 + a3 

as + a3 + a. 

and all linearly independent vectors 
E-If;lkIE-IfI(k_ll' •• E-IfI(IIE-lfi(lj(gJ, 

where 1 :::;; k :::;; 22al + 4202 + 30a3 + 16a4 and i(k) = 1,2, 3, or 4. 

(17) 

The proof of Lemma 2 is essentially the same as 
that of Lemma 2 ofI. 

Finally, the matrix elements of F,-generators in 
the IR 'Y(F.) are obtained when (II), (13), and (15) 
are applied to the basis constructed in Lemma 2. 

IV. EXAMPLE 

As an example, let us calculate a matrix element 

Wit = «gl)! E_PI- Pa !(gi» (18) 

between the normalized states 

l(g'» = (Nir1(gll) and I(gf» = (N ,)-lE_plE_pa(gll) 

(19) 

of the 1274-dimensional representation'Y of F4 whose 
highest weight is Nil = 1'2' 

According to Lemma 1, the highest weight of 
cD(A25), whose patterns we have to use in our example, 
is Mil = 113' Consequently, the pattern (gil) of Lemma 
2 is 

(gil) = 

1 1 1 0 .. , 0 

1 1 1 0 

1 1 1 

1 1 

1 

(20) 

Let us first verify that the vectors (19) do belong 
to the representation space R('Y). According t~ 
Lemma 2, it is obvious for l(gi), and one has to show 
it only for I (gl). The straightforward proof would 
be to substitute (11) and (20) into (19) and use the 

standard rules2 about how the operators Ii,J act on 
Gel'fand patterns. However, it is shorter to verify 
only that each successive application of a lowering 
operator E_p. in (19) gives a vector whose F4-weight 
belongs to the weight system of'Y(F4). Thus, in our 
example, one has to check that N" - P2 and N" -
P2 - PI are weights of 'Y. This is easily done using (1) 
and the algorithm for calculation of weights.s 

Now we can start the calculation of (18). Again it 
is possible to substitute for E_P1- Pa the corresponding 
linear transformation (13) of operators Ii,; and let 
them act on (g,,). However. it is much shorter if we 
first make several simplifications. Using (11) and the 
commutation relations1.

2 of Ii,S, one finds 

E_P1- Pa = [E_Pl ' E_pJ 
Hence, 

Wfi = (NiNf)-l (E_plE_pa(gll)! E_PlE_ flz 

- E-PaE-Pl I (g,,» 
= (NiNf)-l «g,,)! EPaEP1(E-lhE-Pa 

- E_p,Ep1) l(gJ). (21) 

Using the commutation relations (14) ands 

[Hpi , Epl] = (Pi' P,)Epl , Hpi I(gll) = (P., N,) I(g,.» 
(22) 

together with 
... Epj I(gll» = «gJI E_PI ••• = 0, (23) 

one has 
1 

Wfi = N.N
f 
«g,,)I-(Pl> P2)Hp,l(g,,) 

= - (PNI 'N{J2) (P2' N ,,)(gll I gil) 
• f 

= _1_ (P 7' )« ) I ( » = «gil) I (gil». 
N N it> 2 gil gil NN 
iff f 

(24) 
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Here we have used the property (PI' P2) = -1 of 
simple roots of F4 and (II). Similarly one can calculate 
also the normalization coefficients Ni and N,. Ob
viously the normalization coefficient Ni is given by 
the normalization of A2s-Gel'fand-patterns, i.e., 

and 
Ni = [«gil) I (gh»1t , 

N f = [(E-1hE_p.(gh) I E_PIE_p.(gh»]t 

= [«gh)\ Ep.EplE_P1E_p.\(g,,»]t 

= [«gh)\ HplHp. - (PI' P2)H p.l(gh»]t 

= {«gh) I (g,.)({J2, T2)[l + (PI, T2)])}t 

(2S) 

= [«g,.) I (gh))]!' (26) 

Finally, using (2S) and (26) in (24), we have Wfi = 1. 

V. REMARKS 

The inequality al ~ a3 of (6) restricts the class of 
F4-representation to which the complete labeling of 
Lemma 2 can be applied. Indeed, were al > a3, then 
the coordinate (aa - al) at V2 of the highest weight 
Mh of (7) would be negative. However, the basis {Vi} is 
constructed in such a way that all coordinates of any 
highest weight of any representation must be non
negative, as can be seen, for instance, by comparing 
(14), (IS'), and (7). 

It is worthwhile to point out that some restriction 
similar to (6) seems fundamental and therefore cannot 
be avoided. However, it can be modified either by 
choosing a "bigger" representation of A25 than that 
of (7) or by embedding F4 into another algebra 
of rank higher than 2S: thus, for instance, replacing 
(7) by 

Mh = (a4 - tal)VI + aaV2 + a2Va + ta1v5. (27) 

Lemma 1 holds provided that Nh of (6) is subject of 
the condition 

a1 even and a4 ~ tal' (28) 

(b) of the Lemma is omitted, and (c) is modified. In 
fact, even the most general form (4) of Mit in (7) would 
not allow us to consider all IR's of 7(F4) in the 
present embedding. 

For many applications it is useful as a check to 
know independently the normalization of the repre
sentations. The matrices E±Yi and Hyi , where Yi is a 
root of F4 , are the generators of the (reducible) 
representation $(F4)' They are normalized as 

(E±yl = Tr EY.£-l'; = h', Tr IjlQlq/l = h-/Ib(A •• ) 
= 11b(]!',) = 1'¥(1<',) + /'\"1(1<',) + ... , 

(Hyl = Tr Hl"Hy, = (Yi' Yi)}1<'/<I>U •• ) 

= (Yi' Yi)(I'¥(1<'.) + I'¥t w.) + ... ). (29) 

Here 7(F4), 7 1(F4) , ••• are the IR's in $(F4);j1<', = 6 
is the index of the subalgebra F4 in7 ,8 A25 ; IlbW) is the 
index of the representation $ of the algebra G.7.9 
Hence, in the I R \Y(F4) , the generators are normalized 
as 

(E±yl = Tr EYi£-l'i = 1,¥(1<',) , 

(Hyl = Tr HYiHYi = (Yi' Yi)/'¥(1<',). (30) 

The value of /'1'(1<',) is calculated from9 

1'1:" = [d(o/)/S2](2ai + 6ai + 3a; + a; 

+ 6a1a2 + 4a1a3 + 2a1a4 + 8a2aa + 4a2a4 
+ 3a3a4 + 16a1 + 30a2 + 21a3 + 11a4), (31) 

where ai are the coordinates (6) of the highest weight 
Nit of 7(F4) and d('}!') is the dimensions of 'Y. 

ACKNOWLEDGMENT 

I am grateful for the hospitality extended to me at 
the Aspen Center for Physics, where most of this work 
was done. 

1 J, Patera, J. Math. Phys. 11, 3027 (1970). 
• I. M. Gel'fand and M. L. Tsetlin, Dok!. Akad. Nauk SSSR 71, 

825 (1950); also I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, 
Representations of the Rotation and Lorentz Groups and Their 
Applications (Pergamon, New York, 1963), Supp!. II. The results 
were rederived and signs of final formulas corrected by G. E. Baird 
and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963). 

3 The same difficulty arises when considering the algebras of 
types E • • E7 , and E •. 

, A. Navon and J. Patera, J. Math. Phys. 8, 489 (1967). 
• E. B, Dynkin, Am. Math. Soc. Trans!., Ser. 2, 6, 245 (1957). 
• For instance, Ref. 5, p. 326. 
7 E. B. Dynkin, Am. Math. Soc. Trans!., Ser. 2, 6, 111 (1957), 

Tables 16 and 25. 
8J. Patera, Nuovo Cimento 46, 637 (1966). 
t J. Patera, Nuovo Cimento 58A, 402 (1968). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12. NUMBER 3 MARCH 1971 

Group Theory of Superfluidity 

A. I. SOLOMON 
Dublin Institute for Advanced Studies, Dublin, Ireland 

(Received 1 June 1970) 

~e method of using a dynami~1 group to generate the energy spectrum of a given Hamiltonian is 
apphed to the case of a superftuld Bose system. Here the relevant group is found to be SU(l, 1) [or 
ilk ® SU(1, 1)", for a multilevel system]. The energy eigenvalues and eigenfunctions are obtained by 
means of the group. 

1. INTRODUCTION 

We describe a method for treating a system of 
superfiuid bosons which is based on similar treatments 
of the hydrogen atom'! This method exploits the 
use of groups which are not themselves symmetry 
groups of the Hamiltonian, but whose algebras are the 
so·called spectrum generating algebras.2 A knowledge 
of the relevant group of the problem enables one to 
write down the energy eigenvalues and evaluate the 
eigenstates, as well as suggesting what form additional 
correction terms to the Hamiltonian should take. We 
illustrate the method by first applying it to a simple 
superfiuid system consisting only of a ground level and 
a degenerate excited level (the Foldy modeI3); we 
shall see that the relevant group here is the noncom
pact pseudo-unitary group SUO, 1). This then enables 
us to treat a many-level superftuid system, since in 
the usual approximation the reduced Hamiltonian 
is so chosen that the spectrum generating group is 
simply a direct product Ilk ® SU(l, l)k' which in
troduces essentially no additional complication. We 
exhibit the energy spectrum and eigenstates for this 
case. 

2. SIMPLE SUPERFLUID MODEL 

zero state; let us assume for our weakly interacting 
system that the zero state is macroscopically occupied, 
so that we may treat the operators ao and aJ as if they 
were equal. to the c number Nol, where No = <a6ao> 
(ground state). This is the physical assumption which 
gives rise to the superftuid character of the model. 
Thus the reduced Hamiltonian is 

H red = (10 + NoV)(a~a+ + a~a_) 
+ NoV(ata~ + a+a_). (2.3) 

Now denote the operators occurring in H red by 

t t J 1 = -t(a+a_ + a+a_) 
and 

Ja = !(ata+ + a~a_ + 1). 

We then find that the algebra generated by commuta
tion of these operators closes on the introduction of 
only one additional operator 

J! = ti(a~a~ - a+a_). 

These Hermitian operators have the commutation 
rules 

[Ju J2] = - iJs , [J2 ,Js] = iJl , [Js ,11] = iJa• 

(2.4) 

Let us consider a system of N weakly interacting If the first commutator had a plus sign, this would be 
bosons described by the following Hamiltonian: the well-known angular momentum algebra of 

H = I Eka!ak + ! I Vka~+ka!_kaflaq, Ek = k'A/2m. 
k k.fl.q 

(2.1) 

If we limit ourselves to the case where there are only 
three states in the system, so that p, q, k, . . . take on 
the values (-1,0, +1) only and such that E±l = E, 

V±:l = V. and EO = 0 = Vo (the Foldy modelS), then 
the Hamiltonian becomes 

( t t) H = 10 a+a+ + a_a_ 

+ V[aJao(ata+ + a~a_) + aJ2a+a_ + a~ata~] 
(2.2) 

SO(3) -- SU(2); 

with the above signs the algebra is that of the non
compact pseudo-unitary group SO(2, 1) -- SU(l, 1). 

In terms of the SUO, 1) generators (2.4), the re
duced Hamiltonian (2.3) becomes 

Hred = 2NoV(pJs - J1 - til), Il = 1 + E/NoV. 

(2.5) 

The problem now consists in solving the Schro
dinger equation 

(2.6) 

(where we have written a±: for a±l)' For V = 0, the This may be considerably simplified if we note that 
ground state would consist of all N particles in the one of the operators Jl or J3 may be rotated away, 

390 
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for consider a rotation by 0 about the J2 axis, 

R(O) == e-iJs', 

so that 

R(O)J1R-1(O) = cosh OJ1 + sinh OJ3 , 

R(0)J3R-1(6) = cosh OJ3 + sinh OJ1 , 

R(6)HR-1(0) = 2NoY[J3(/l cosh 0 - sinh 0) 

- J}(cosh 0 - /l sinh 0) - tIl]. 

Since Itanh 81 < 1 for all 0, we may rotate either 
J1 or J 3 away depending on the sign of the potential 
V; thus 

(i) V < 0; attractive potential, p. < I: choose () = 
tanh-1/l, 

RHR-l = -2NoV{J} sech () + tIl); 

(ii) V> 0; repulsive potential, /l > 1: choose () = 
coth-1/l 

RHR-l = 2NoV(Ja csch 8 - t/l). 
Since 

[R(O)HR-l«()}R(8) l'Pn) = EnR(O) l'Pn), (2.7) 

the energy spectrum is immediately obtained as that of 
the rotated Hamiltonian and the eigenstates as the 
rotated eigenstates of the diagonalized generator. Thus, 
in case (i) we obtain a continuous spectrum, since that 
of the noncompact generator J1 is continuous. The 
second case is of more physical interest, as the spec
trum of the compact generator J3 is discrete and 
integer spaced. The Casimir operator may be written 

C = -J~ - J~ + J: = t(~2 - 1) 

in terms of the invariant of the Hamiltonian 

~ = a:a+ - a!a_. 

Since our spectrum must be bounded below, the only 
anowed representation is tj)+(j) [see Appendix, cases 
(A13b) and (AI4b)}. For a unitary representation, 

j = -!- - !- 16.1 = -a, for a given 6.. 

Thus the spectrum is given by 

J3 1n) = (n + a) In) (2.8) 
or 

En = (2n + 1 + I~I)E - NoV - E, 

where 

E = (2ENoV + €2)!, n = 0, 1,2,···. (2.9) 

The energy eigenstates are obtained from Eqs. (2.7) 
and (2.8) as 

l'Pn) = R-1(O) In) 

or 

l'Pn) = I Im)(ml R-1(0) In) = I S~,.(g) 1m) 
m m 

in the notation of the Appendix. The group element 
corresponding to the finite rotation R-l(O) is given by 
g(ct, P), where ex = cosh 10, P = sinh iO, by use of 
the representation (AS). Then S!.n(g) is given by 
expression (AtS). 

As an example consider the case I~I = 0 (equal 
numbers of "+ .. and "-" particles). The ground 
state l'Po) = Lm s;;;t(g) 1m) may be calculated from 
(AIS) by using the properties of gamma functions 
and noting that only one term contributes to the sum. 
and one finds 

l'Po) = I (-)'" sech iO(tanh !o)m 1m). (2.10) 
m 

In terms of the free-particle vacuum state 10) obeying 
a+ 10) = a_IO) = 0, 1m) = (m!)--l(ata!r 10), this sim
plifies to 

l1J!o) = (1 - t2)! exp (- tala2) 10), (2.11) 
where 

t = tanh to = -Eo/NoV. 

The results (2.9) and (2.11) are those obtained by 
diagonalization3 via the Bogoliubov transformation.4 

3. SUPERFLUID HELIUM 

In view of the preceding section it is now a simple 
matter to treat the Hamiltonian (2.1). Using, as before. 
the Bogoliubov approximation ao '"" aJ '"" Nt, we may 
write (2.1) as 

H = tN~Vo + I(€lc + N"Vlc + NoV,,)a!a lc 

+ tNo I Vk(a!a~k + aka_t ), 

where the summation is over k and does not include 
k = 0, and we neglect terms of higher order in ak • To 
the same order we may use N = No + I aZak , in the 
sense of the expectation values, to rewrite H as 

H = t N2vo + .I (€k + NVk)a!ak 

Writing 
+ iN I Vk(a!a~k + aka_k)' (3.1) 

Jik) = -t(a:a!1e + aka_k), 

J (k) 1'( t t ) 2 = yl aka_k - aka_Ie • 

J;kl = t(a:ak + a!ka_k + 1), 

(3.2) 

we see that {J~k), J~k) • JiS)} generate the algebra of the 
group SU(1, 1)(k) , and the Hamiltonian (3.1) may be 
written in terms of the direct sum of generators J?) of 
the product group ilk ® SU(l, 1)(k); thus 

H = I G1 NVk( -Jik
) + /l1.J~k) - f,uk) + tN2vo, 

k 

Ilk = 1 + £k/NVlc' (3.3) 
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As before, the case Vk < 0, Pk > 1 gives the contin
uous spectrum, while for Vk > 0, ot Pk < 1, the 
Hamiltonian may be simplified by the rotation 

R = IT ® R«(}k)' R(Ok) = exp ( - iJ~kIOk)' 
~, 

(3.4) 
so that 

RHR-1 = ~ EEl (csch (}kJ~k) - }Pk)NVk + tN2Vo· 
k 

(3.5) 
The Casimir invariants are 

Ck = _(Jikl)2 - (J~k»2 + (J~kl)2 = H~! - 1), 

where the constants of the motion 6.k = atak - a!ka_k 
are the differences between numbers of particles in 
opposite momentum states. As the spectrum must be 
bounded below, the only allowed representation is 

IT ® 'j)+(jk), jk = -! - ! l6.kl = -(fk' 
k 

Writing the basis in terms of eigenstates of J~k), where 
JJkl Ink) = (nk + O"k)lnk) , so that 

In1 , na, ... , nk, . , .) == Inl ) In2) ... Ink) ••• , 

nk = 0, 1, 2, .. " (3.6) 

we see that the energy eigenvalues are 

E(nl' n2 ,···. nk .···) 

= 2 (nk + t + ! l~kJ)Ek + const, 

where Ek = (2€kNVk + €ii. (3.7) 

The energy eigenfunctions may also be written 
down explicitly as before; thus 

H 11J'(nl. n2 • ••• , nk, ... »= E(nl , n2, ... , nk , ••• ) 

X 11J'(nl ,n2 ,'" ,nk ,"'», 
where 

where 

f3 ) [ OCk f3kJ 
gk = g(lXk, k = Pk ilk ' 

OCk = cosh tOk Pk = sinh 10k' 

Again the ground state may be calculated explicitly 
to yield 

11J'(0, 0," -» = (1](1- t!)!)exp (t(-tka~a~k)IO») 
for the case ~k = 0, tk == tanh !Ok' 

4. SUMMARY 

The method we have utilized in this paper, the 
application of groups which are not symmetry groups 

of the Hamiltonian but which may be used to generate 
the spectrum, has been adapted from the field of 
particle physics to the present many-body context. 
However, unlike the case of particle physics, here we 
are in possession of a Hamiltonian formulation of the 
theory, and so it would appear that the method is 
capable of wide usage. 

In the preceding work we have applied the method 
to the simple case of the reduced Hamiltonian of a 
superfluid system, thereby obtaining the spectrum and 
wavefunctions. In this case, the spectrum, at least, is 
obtainable by other means, but the advantage of the 
group theory approach, apart from its elegance, is the 
possibility it provides of a deeper understanding of 
the mathematical structure of the theory and of a pos
sible comparison with other theories. Thus, while for the 
superfluid Bose system the relevant group is SU(l, 1) 
[or TIl.: ® SU(1, l)k] it would appear that the anal
ogous group in the superconductivity case is SU(2) 
[or ilk ® SU(2)k).5 Here the infinite spectrum arises 
in spite of the fact that we are dealing with a compact 
group because of the infinite direct product nature of 
the dynamical group. 

In addition, light is thrown on the Bogoliubov 
transformation, which appears here merely as a 
rotation in the space of the algebra, and the role 
played by the sign of the potential in distinguishing 
between the continuous and discrete spectra. 

In principle, the group approach may be used for 
the solution of any many-body problem involving a 
Hamiltonian expressed in terms of creation and anni
hilation operators. In practice, the method is only 
convenient in those cases where the resulting algebra is 
of a sufficiently noncomplicated structure. 
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APPENDIX: THE GROUP SU(l, I) 

We review briefly the properties of the noncompact 
Lie Group SU(1, 1), following Ref. 6. This group is 
defined as the set of unimodular 2 x 2 matrices g 
obeying 

They may be parametrized by 

g(Ot, p) = [p ~J. locl 2 
- ItW = 1. (A2) 



                                                                                                                                    

GROUP THEORY OF SUPERFLUIDITY 393 

Another parametrization is in terms of three real vari

ables Ole' 
3 

g = exp i'l,OleJIe' (A3) 
1e=1 

where the conditions (AI) on g imply that the JIe are 
traceless and obey 

JleA - AJ; = O. (A4) 

A choice of 2 X 2 matrices J1c to which all other sets 
are equivalent is 

J =![ 1J J = _li[ 1J, 
I 2 -1 '2 2 I 

J3 = ![1 J. (AS) 
2 -1 

These matrices have the commutation relations 

[JI ,}2] = -iJ3, [J2,}3] = iJI' [J3,}1] = iJ2, 

(A6) 

which define the Lie algebra of the Lie group SU(l, I). 
We note that the 2 X 2 matrices (AS) are not all 
Hermitian; as this algebra is noncompact, there exists 
no nontrivial finite-dimensional Hermitian representa
tion. It is convenient to introduce the combinations 
J± = (±J1 + iJ2)/-j2 which obey 

[J3 ,}±] = ±J±, [J+,J-] = J3 • (A7) 

Considering the group as a transformation group on 
the spin or 

thus 
g: ~ ~ ~' = g(oc, P)~, (AS) 

we, can find representations on the function space of 
the ~ in the usual way by right translations: 

Differential operators corresponding to the infinites
imal generators JIe may be obtained by the standard 
procedure (6): 

{Ja,J+,r} 

{
I ((} (}) 1 a 1 a } 

,......, 2: ~1 a~l - ~2a~2 ' .)2 ~1 a~2 ' .)2 ~2 a~l • 

(AIO) 

All the irreducible representations may noW be 
obtained by considering the action of the differential 
operators (AlO) on the monomial la, b) = ~~~, where 

a and b may take' on arbitrary complex values. Thus 

J3 1a, b) = t(a - b) la, b), (A 11 a) 

J+ la, b) = 21 b la + 1, b - 1), (Allb) 

r la, b) = 21 a la - 1, b + 1). (A 11 c) 

These equations show that for any irreducible repre
sentation the numbers j = iCa + b) and (1 = frac
tional part of !(a - b) are constant. The spectrum of 
J3 may be labeled by m, where (1 = m + i(a - b), 
m = integer. The Casimir operator C = -Ji - J: + 
Ji obeys 

C la, b) = j(j + 1) la, b). (AI2) 

The representations 'J)(j, a) are irreducible unless one 
of the coefficients of Eqs. (Allb) and (All c) vanishes; 
i.e., either a or b or both are integers. Therefore, the 
irreducible representations are classified by the follow
ing: 

'J)(j, a) a,b not integers, choose -1 ~ R/11 < 1. 
Spectrum, J3 - (1 = 0, ± 1, ±2, .. '. (Al3a) 

'J)+(j, (1) a integral, b not; a ~ 0, 11 = -j. Spec

trum, J3 - 11 = 0, 1,2, .. '. (A 13 b) 

'J)-(j, a) b integral, a not; b ~ 0, 11 = j. Spectrum, 

J3 - 11 = 0, -1, -2,···. (A13c) 

'J)(j) a and b integral, (a + b) ~ O. Finite spectrum 

J s = {-j, -j + 1,'" ,j - l,j}. (A13d) 

If, in (Al3d), (a + b) < 0, then a 20 gives 'J)+ and 
b 20 gives 'J)- as (Al3b) and (A13c). 

Unitary irreducible representations are obtained by 
suitably normalizing the base vectors, Ij, m) = 
Nm la, b), introducing the inner product 

(j, m Jj, m') = bmm" 

and imposing the hermiticity condition on the gener
ators, 

JIe = J~ or (J+)t = -r. 
The above representations then become unitary for 
values of the pair (j, (1) as follows: 

'J)'J}(j, (1), principal series, a real, j = -t + iA.; 

'J)g{j, a), supplementary series, 0', j real; 

Ij + il < !- - lal· (AI4a) 

'J)+(j), positive discrete series, real j = - (J, j < O. 

(A14b) 

'J)-(j), negative discrete series, real j = 11, j < O. 

(Al4c) 

'J)(j), trivial representation, j = O. (A14d) 
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The normalization constant for lJ)fI(j, 0') is given by N m = I; for all the others 

N m = [em + 0' - 1 - j)!/(m + 0' + j)!)!. 
Finally, the finite matrix elements corresponding to the group element g = g(rx., (J) are obtained directly 

from (A9) as folJows: 

S(g) /i, n) = N,,(rx.E1 + PE2)i+ I1+"({JE1 + aE2)i-a-n = I S{ .. n(g) Ii, m). 
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The purpose of this paper is to prove one of Zeeman's conjectures that the group of homeomorphisms of 
the finest topology on Minkowski space that induces the 3.dimensional Euclidean topology on spacelike 
hyperplanes is the one generated by the inhomogeneous Lorentz group and dilatations. 

1. INTRODUCTION 
Apart from the pure mathematical interest, there 

are several reasons for finding out topologies for 
Minkowski space, the 4-dimensional space-time 
continuum of special relativity, whose homeomor· 
phism groups form precisely the inhomogeneous 
Lorentz group. Since Minkowski space is a 4-dimen
sional real vector space, it is natural to consider the 
Euclidean topology which is generated by the usual 
Euclidean distance function. Such a topology is 
locally homogeneous and hence unsuitable, because, 
at each point of Minkowski space, the null cone 
separates the spacelike vectors from the timelike ones. 
Moreover, the group of homeomorphisms in the case 
of Euclidean topology is too large to be of any physical 
significance. For example, one can define a linear map 
which maps a spacelike vector to a timelike vector; 
this is clearly a homeomorphism with respect to the 
Euclidean topology. This topology is completely 

unrelated to the quadratic form, which is physically 
so important. 

As is well known, the indefinite quadratic form on 
Minkowski space, in a very natural manner, gives 
rise to a causal relation, i.e., a relation of precedence, 
which in the mathematical sense is simply a partial 
order on the collection of space-time events. Thus, as 
a partially ordered set, Minkowski space can be given 
the "interval topology," 1 but the interval topology 
and the Euclidean topology coincide in the case of 
Minkowski space. 2 Zeeman3 suggested that Min
kowski space be given a topological structure appro
priate to the mathematical structure of the space, that 
is, a topology which "fits" the indefinite fundamental 
form and the null cones associated with it. 

The topology suggested by Zeeman (which he calls 
the "fine topology") is defined as the finest topology 
on Minkowski space such that the induced topology 
on every spacelike hyperplane and every timelike line 
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which in the mathematical sense is simply a partial 
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a partially ordered set, Minkowski space can be given 
the "interval topology," 1 but the interval topology 
and the Euclidean topology coincide in the case of 
Minkowski space. 2 Zeeman3 suggested that Min
kowski space be given a topological structure appro
priate to the mathematical structure of the space, that 
is, a topology which "fits" the indefinite fundamental 
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The topology suggested by Zeeman (which he calls 
the "fine topology") is defined as the finest topology 
on Minkowski space such that the induced topology 
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is Euclidean. The fine topology is physically significant 
in the sense that the group of its homeomorphisms is 
precisely the inhomogeneous Lorentz group together 
with dilatations. It turns out, on investigation, that 
there exists a wide class of topologies on Minkowski 
space each of which has the same homeomorphism 
group as that of the fine topology. The general 
procedure for definiJ;lg such topologies is to prescribe 
the induced topologies on spacelike hyperplanes and 
timelike and lightlike lines. In the case of the fine 
topology, one has information about two types of 
compact sets, namely the 3-dimensional ones on 
spacelike hyperplanes and the I-dimensional ones on 
timelike lines. This is the main reason why it is 
possible to derive the homeomorphism group with 
considerable simplicity. If, however, we have only one 
piece of information, i.e., either about compact sets 
on spacelike hyperplanes or about compact sets on 
timelike lines, then it becomes much more difficult 
to derive the homeomorphism group and, in certain 
cases, an almost impossible task. The object of this 
paper is to consider one such case and to prove one of 
Zeeman's conjecturess that the finest topology on 
Minkowski space that induces Euclidean topology on 
spaceIike hyperplanes has the same group of homeo
morphisms as that of the fine topology. 

Not many results of topology and analysis are 
needed to prove the conjecture. Only elementary 
notions of topology such as "compactness," "connect
edness," and "limit point," etc., are used throughout. 
Baire's category theorem and elementary properties of 
Lebesgue measure on the real line are about the only 
results from analysis which have been employed in the 
course of the proof. 

2. NOTATION AND TERMINOLOGY 

Let M denote Minkowski space with characteristic 
quadratic form Q: 

Let 

M = {(xo, Xl' X2' xs):x i are reals}, 

Q(x) = x~ - x~ - x~ - x~. 

K = {x EM:Q(x) > 0 and Xo > O}, 

L = {x EM: Q(x) ~ 0 and xo > O}. 

It is easy to verify that K satisfies the following three 
conditions: . 

(i) K + K = {x + y:x E K, Y E K} c K; 
(ii) aK = {ax: x E K} c K for every positive 

number a; 
(iii) K n (-K) = C/>, where -K = {-x:x E K}. 

L also satisfies (i), (ii), and (iii). K and L are so-called 

positive cones, and each generates a partial order on 
M as follows: 

x < y <=> y - X E K, 

x«y<=>y-xEL. 

There is also another relation <. on M defined by 
x <. y <=> Q(y - x) = o and Yo - Xo > O,i.e.,y - x 
is a future-pointing lightlike (null) vector; this is not a 
partial order due to the lack of transitivity. With this 
notation, it is easy to establish that 

x « y <=> {either x < y 
or x <.y. 

A real vector space with a partial order < is said to be 
a partially ordered vector space (POYS), if the order 
structure is compatible with the vector space structure, 
i.e., (i) x> 0, y > 0 => x + y > 0 and (ii) x> 0, 
a > 0 => ax > 0, where a is a real number. From the 
properties of the positive cones K and L, it follows 
easily that M is a POYS with respect to < or «. 

A mapping f of (M, <) into itself is said to be order
preserving if x < y => f(x) < fey). Iff is one to one, 
then it is said to be inverse-order-preserving if f- l is 
order-preserving. A one-to-one mapping of M onto 
itself which is both order-preserving and inverse
order-preserving is called an automorphism of M. 
Since we have two partial orders < and «, we shall 
write < -automorphism or «-automorphism de
pending on which order we use. Similarly, we shall 
use the words < -preserving and «-preserving, etc. 

Two elements x and y of M are said to be com
~arable ~ith respect to the partial order < (respec
tIvely, With respect to «) if either x < y or y < x 
(respectively x « y or y « x). A subset P of M is said 
to ~ linearly ordered with respect to < (respectively 
«) If any two elements of P are comparable with 
respect to < (respectively «). Let G be the group of 
one-to-one mappings of M onto itself consisting of 
(i) the Lorentz group, i.e., all linear maps which leave 
the quadratic form Q invariant, (ii) translations, and 
(~ii). dilatations. Let Go be the subgroup of G con
slstmg of the < -automorphisms of M. Since every 
element of G either preserves or reverses the partial 
order < in M, it follows that Go is of index 2 in G. 
Zeeman4 has proved that the group of < -auto
morphisms of M is Go. (This result will be referred 
to as Zeeman's theorem hereafter.) 

We have the following cones at x: 

light cone at x: CL(x) = {y:Q(y - x) = O}, 

time cone at x: CT(x) = {y:Q(y - x) > O} u {x}, 

space cone at x: CS(x) = {y:Q(y - x) < O} u {x}, 

CLT(X) = CL(x) U CT(x). 
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It may be easily seen that if K*(x) = (K + x) u {x} 
and L*(x) = (L + x) U {x}, then CT(x) = K*(x) U 

[-K*(x)]andsimilarlyCLT(x) = L*(x) U [-L*(x)]. 
Since every element of G leaves the sign of Q fixed, it 
is clear that all these cones are invariant under G. 
With the above notation, it is also easy to see that if 
fis a <-automorphism, thenf(K*(x» = K*(fx) and, 
similarly, iff is a «-automorphism, then f(L * (x» = 
L*(fx). 

3. «-AUTOMORPHISMS OF M 

In this section, we prove that the group of «
automorphisms of M is Go. We start by proving a 
lemma. 

Lemma J: Let f be a «-automorphism and x <. y; 

thenfx <.fy. 

Proof: Let [x, y] denote the closed line segment 
joining x and y. Since x <.y, one has [x,y] = 
L *(x) n [-L *(y)], and, sincefis a «-automorphism, 
it follows that 

f[x, y] = f(L * (x) n [-L*(y)]) 

= L*(fx) n [-L*(fy)]. 

Now suppose to the contrary thatfx <.fy is not 
true; then either (i)fx <fy or (ii)fx «fy is false. In 
thesecondcase,L*(fx) n [-L*(fy)] = cp =f[x,y], 
which is a contradiction, since f is a one-to-one map. 
In the first case, it is possible to choose a Euclidean 
open set 0 in L*(fx) n [-L*(fy)] and two points 
p and q in 0 such that neither p « q nor q «p. But 
[x, y1 is a linearly ordered set with respect to «, and so 
isf[x, y], sincefis a «-automorphism. Thus we have 
a contradiction, and the lemma is proved. 

Theorem J: The group of «-automorphisms of M 
is Go. 

Proof: It follows from Lemma I that the forward 
and backward light cones are preserved by any 
«-automorphism; therefore,f(K(x» = K(fx). Thus, 
f is a <-automorphism of M and, by Zeeman's 
theorem, is an element of Go. On the other hand, 
every element of Go is clearly a «-automorphism. 
This completes the proof. 

4. DEFINITION AND PROPERTIES OF 
SPACE TOPOLOGY 

Definition J: The space topology on M is defined 
as the finest topology with respect to which the induced 
topology on every spacelike hyperplane is Euclidean. 

Denote by MS and ME the set M equipped with the 
space topology and the Euclidean topology, respec
tively. 

By definition, the space topology is finer than the 
Euclidean topology and hence Hausdorff. 

Let 

NNx) = {y:d(x, y) < E, where d is the Euclidean 

, distance function on M and E > O} 

and let N;(x) = N-:-(x) n CS(x). It is easy to establish 
that the topology generated by the sets {N;(x)} induces 
the 3-dimensional Euclidean topology on every space
like hyperplane. If we call this topology the s-topology, 
then the space topology, by definition, is at least as 
fine as the s-topology. Indeed, the following example 
will establish that the space topology is strictly finer 
than the s-topology. 

Let {Hn} be a sequence of distinct spacelike hyper
planes passing through a point z. Choose a point 
Zn E Hn such that d(zn' z) ---+ 0 as n ---+ 00 and, more
over, such that not more than a finite number of Zn 

should be contained in any Hn. Let Z = {zn}. We 
shall now show that Z is closed in M S ; it is enough to 
prove that H n Z is a finite set, where H is any 
spacelike hyperplane. Suppose to the contrary that 
H n Z is infinite; then, H being complete in the 
induced Euclidean topology, the sequence H n Z 
must converge to a point of H, and, since H is 
Hausdorff, the point must be z. Thus H passes through 
the point z, and, by our choice, H n Z is at most 
finite. This is a contradiction and the assertion is 
proved. zc is then open in M S (where ZC denotes the 
complement of the set Z). On the other hand, zc is not 
open in the s-topology since any neighborhood N:(z) 
of Z in this topology will meet Z. 

The space topology induces the discrete topology 
on every timelike or lightlike line, for, if A is any such 
line, then, for any x E A, A n N;(x) = {x}. Following 
either a measure-theoretic argument or simple topo
logical arguments, we can also establish that the space 
topology is not normal. It is not locally compact, nor 
does it have a countable base of neighborhoods. 

S. ZENO SEQUENCE 

Definition 2: A Zeno sequence Z = {zn} in M S is a 
sequence of distinct points of M not containing Z 

such that Zn ---+ Z in ME and Zn -H- Z in MS. 

Zn ---+ Z in ME implies that every E-neighborhood of 
Z in ME meets Z and therefore Z E ZE (where the bar 
followed by E indicates closure in the Euclidean to
pology). Since Z is not in Z, it follows that Z is not 
closed in ME. On the other hand, Zn -H- Z in M S means 
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that there exists a neighborhood 0 of Z in the space 
topology such that 0 (\ Z = cp; hence Z is an interior 
point of ZC in MS. We claim that ZC is open in MS. To 
prove this, it is enough to show that every x :;i: Z of 
ZC is an interior point of ZC in MH. Let x :;i: Z be any 
point of ZC; then there exists a Euclidean neighbor
hood of x not meeting Z (which also serves as neigh
borhood in the space topology since the space topology 
is finer than the Euclidean topology); for, ifnot, then 
every Euclidean neighborhood of x will contain 
infinitely many points of Z, and, consequently, x will 
be a limit point of Z in ME, thus giving a contradiction 
(since ME is Hausdorff and x :;i: z). Thus, ZC is open 
in M S

, and consequently Z is closed. 
Conversely, if we have a sequence Z = {zn} of 

distinct points such that Z is closed in MS and not 
closed in ME, then Z must be a Zeno sequence by 
definition. Thus, we have proved the following. 

Proposition J: A sequence Z = {zn} of distinct 
points of M S not containing Z is a Zeno sequence iff Z 
is closed in M S and not closed in ME. 

In view of the peculiarities of the space topology, 
it is easy to construct Zeno sequences. 

Example J: Consider the sequence Z = {zn} as in 
Sec. 4 above; Z is closed in Mfl and not closed in ME; 
it is therefore a Zeno sequence. 

Example 2: Let {tn} be a sequence of distinct time
like or lightlike (or a combination of both) lines 
passing through a point z. Choose Zn E tn such that 
d(zn'z)--O as n-- 00; then, clearly, Zn--Z in ME. 
On the other hand, a neighborhood of the form 
N:(z) does not meet Z = {zn}; hence Zn -t-H in MS. 
Z is thus a Zeno sequence. 

The most important property of a Zeno sequence 
that will be used subsequently is the following. 

Lemma 2: A compact set of MS cannot contain a 
Zeno sequence. 

Proof: Let D be a compact set of M S containing a 
Zeno sequence Z. Z being a closed subset of a compact 
set is compact. It is easy to see that the topology 
induced by the space topology on Z is discrete because 
one can always choose a Euclidean E-neighborhood 
about any point Zn E Z which contains no other point 
of Z. Since the points of Z are distinct, it follows that 
Z is an infinite discrete set and therefore cannot be 
compact; thus we have a contradiction. 

6. HOMEOMORPHISMS OF MS 

This section is devoted to the derivation of the 
group of homeomorphisms of Mfl. We now go through 
a series of lemmas. 

Lemma 3: Let h be a homeomorphism of M S and B 
a 3-dimensional closed ball with center x, contained 
in a spacelike hyperplane H passing through x; then 
there exists a ball Br of radius r and center x such that 
(i) Br C Band (ii) hBr C CS(hx). 

Proof: First, observe that hB cannot be contained 
entirely in CLT(hx); for, if this is the case, then 
hB (\ N:(hx) = {hx} is an open set in hB; i.e., {x} is an 
open set in B which is false since the induced topology 
on B is Euclidean, and hence every singleton is closed. 

Thus there are two possibilities: (i) either hB C 

CS(hx) or (ii) hB is contained partly in CS(hx) and 
partly in CLl'(hx). In case (i), take B = Br • In case 
(ii), Cfl(hx) n hB is an open subset of hB containing 
hx; hence, its inverse image, D say, is an open subset 
of B, and clearly hD C CS(hx). Since B has Euclidean 
topology, it is possible to choose a ball Br of radius r 
such that BT cDc B. Thus, in either case, the 
lemma is true. 

Since Br is compact and connected, so is the image 
hBr • We shall now examine more closely the nature of 
the image hBr • The following two lemmas will give a 
complete description of this set. 

Lemma 4: Let Br and h be as in Lemma 3; then hBr 
is contained in the union of a finite number of space
like hyperplanes. 

Proof: First, we claim that it is possible to choose 
Ii: > 0 such that N:(hx) n hBr is contained in the 
union of a finite number of spacelike hyperplanes 
through hx. Suppose to the contrary that this is not 
possible; then, for every Ii: > 0, N:(hx) n hBr meets 
an infinite number of spacelike hyperplanes through 
hx. One can then construct a Zeno sequence in hBr as 
in Sec. 4. Since Br is compact, this is a contradiction 
in view of Lemma 2, and our assertion is proved. 

Choose Ii: as above; then h-1 [N:(hx)] (\ Br = Oz is 
an open set about x in the induced topology of B,; 
moreover, from the choice of E above, it follows that 
h(O.,) is contained in a finite union of spacelike 
hyperplanes through hx. Since the construction given 
above is valid for each x in Br (i.e., for each x in Br , 
it is possible to choose an open set 0", such that hO", 
is contained in a finite union of spacelike hyperplanes 
through hx) and Br is compact, the proof is complete. 
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Lemma 5: Let H be a spacelike hyperplane through 
X and h a homeomorphism of MS; then ME - hH is 
disconnected and has two components. 

Proof' Note that the induced topology on H is 3-
dimensional Euclidean, so that hH is topologically R3. 
Moreover, MS - H has two components; hence 
MS - hH also has two components. Since the space 
topology is finer than the Euclidean topology, it 
follows that ME - hH has at most two components. 
We claim that ME - hH has exactly two components; 
for, if not, then ME - hHis connected, and therefore 
any two points p and q of ME - hH can be arc
connected by a polygonal path which is piecewise 
spacelike. (This is possible since hH is closed; hence 
ME - hH is open in ME, and every open connected 
subset of ME is arc-connected.) Since the topology 
induced by the space topology on such a polygonal 
path is Euclidean, it follows that MS - hH is arcwise 
connected and therefore connected, which is a 
contradiction. Thus, the proof of the lemma is 
complete. 

Lemma 6: Let w be a spacelike interval passing 
through a point x, and let h be a homeomorphism of 
M s; then there exists a point z in w such that h [x, z] = 
[hx, hz], where hz E CS(hx). 

Proof: For convenience, let us first consider the 
corresponding case in a 3-dimensional Minkowski 
space. Let HI and Hz be two spacelike planes whose 
intersection contains the spacelike interval w. If we 
choose Bl c HI and B2 c H2 as in Lemma 3, then 
hBI and hB2 are each contained in a finite number of 
spacelike planes, say m and n planes, respectively. 
Suppose that HI, H2, ... , Hm are the first m planes 
and H~, H~, ... , H~ are the second n planes; then 

Observe that the intersection of two planes is a 
straight line, so that the right-hand side of the above 
inclusion relation is a union of at most mn straight 
lines, each of which is spacelike. Moreover, BI n Bz 
is connected; hence hBI n hBa is a connected subset 
of those mn spacelike lines. It is enough to take a 
point z' in one linear segment starting from hx such 
that z' E hw and to take z = h-lz'. This clearly serves 
the purpose of the lemma. However, another point 
which is crucial in the above proof must be taken care 
of. One has to consider the case when one of the planes 
H. is the same as one of the planes H~. If S = 
(Hi n hBl) n (H~ n hBJ ~ 1>, then, clearly, it is 
possible to choose a set in S which is open in the 

induced topology of either hBI or hBz• This means 
that one can choose a set in Bl n B2 which is open 
in the induced topology of either BI or Bz• This is 
not possible since Bl n Bz is a linear interval. This 
completes the proof in case of the 3-dimensional 
Minkowski space. 

One can now apply similar arguments to the 4-
dimensional case. Consider two spacelike hyperplanes 
HI and Hz passing through x such that w c HI n H2. 
Choose Bl C HI and B2 C Hz as in Lemma 3. The 
foregoing argument then shows that hBI n hBz is a 
subset of a finite union of spacelike 2-planes, whereas 
Bl n Bz = SI is itself a subset of a spacelike 2-plane. 
Take another spacelike 2-plane passing through x, 
and choose a subset S2 whose image is again a subset 
of a finite union of spacelike 2-planes. Without loss of 
any generality, take we SI n Sz; then hw is a finite 
union of spacelike intervals. Note that w is connected 
in the induced Euclidean topology, so that hw is a 
finite union of piecewise linear spacelike intervals. 
Choose a point z' in the first piece; thus z = h-1(z') 
serves the purpose of the lemma, and this completes 
the proof. 

Our next object is to prove that the partial order « 
is preserved at least locally. To do this, we need the 
following lemma: 

Lemma 7: Let R be the real line with the usual 
topology and f: R -+ R a strictly positive real-valued 
function on R; then, for almost every x (i.e., for every 
x in R - S, where S is a set of measure zero), there 
exists a subset D., in R satsifying the following 
conditions: 0) x E Int OJ.,), where Int denotes "inte
rior" and the bar denotes the closure of a set, and (ii) 
f(y) > k., > 0 for every y E D., for some constant k.,. 

Remark 1: "Measure" means the usual Lebesgue 
measure on the real line. 

Proof: Let An = {x E R:f(x) > lin}. Since f(x) > 
o for every x E R, we have U:"1 An = R. It follows 
now from Baire's category theorem (which states that 
a complete metric space cannot be expressed as a 
countable union of nowhere dense sets) that at least 
one of the sets An is not nowhere dense. Suppose that 
Ale is such a set; then Int (AJ ~ 1> andf(y) > Ilk for 
every y E Ale' For every x E Int (AJ, if we choose 
D., = Aleandk., = Ilk, then clearly the two conditions 
of the lemma are satisfied. Note that R - Int (Ale) is 
again a complete metric space and hence belongs to 
the second category, so that we can apply the preced
ing argument again to R - Int (Ale)' Let P = {x E R: 
there exists a set D., as above satisfying conditions 
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(i) and (ii) of the lemma}. Since U XEI' Int (D,,) is an 
open set, S = R - P is closed. We claim that m(S) = 
0, where m denotes the Lebesgue measure on the real 
line. Suppose to the contrary that m(S) ¢ 0; then S 
must contain an interval I. (A closed set of nonzero 
measure must contain an intervaL5) Choose a closed 
interval eel. Since C is a complete metric space, it 
is possible to apply the same construction as above to 
get a point x in C having a corresponding set D z and 
satisfying conditions (i) and (ii) of the lemma; thus 
x E P. This is a contradiction, and the lemma is 
proved. 

Remark 2: Note that the set S which is of measure 
zero is closed. We call it the exceptional set. 

Remark 3: If R is a line with some other topology, 
then the preceding lemma is valid only when Int and 
closure refer to the usual Euclidean topology of the 
line. 

Remark 3 is significant, since we want to apply the 
lemma to a timelike or a lightlike line in M8 whose 
induced topology is discrete. 

In the following lemma, we shall assume, without 
loss of generality, that Dx is everywhere dense in 
IntE (D~), where E refers to the Euclidean topology 
of the line. 

Lemma 8: Let T be a timelike or a lightlike line and 
h a homeomorphism of M S ; then almost everywhere 
on T (i.e., except on a set S of measure zero, which is 
Euclidean-closed in this case) the following property 
is satisfied: If x E T - S, then there is a point z » x 
in T such that h[x, z] = [hx, hz] with hx« hz or 
hz «hx. 

Proof: Let wand w' be two distinct (fixed) spacelike 
directions such that the 2-plane spanned by wand w' 
is spacelike. For each x in T, let Wx and w~ be the 
half-lines starting from x and parallel to wand w', 
respectively. By Lemma 6, there are points z and z' 
on wand w', respectively, such that [x, z] and [x, z'] 
are mapped by h to spacelike intervals. If f(x) = 
min (d(x, z), d(x, z'», thenf(x) > 0 for every x in T, 
and Lemma 7 applies; i.e., for each x E T - S, where 
S is a Euclidean closed subset of T of measure zero, 
we have a set Dx such that x E IntE (D~) and fey) > 
kx > 0 for every y E Dx. 

Let x E T - Sand Dx be as above. The directions 
T (future-pointing) and w determine a 2-plane s, and 
similarly the direction T (future-pointing) and w' 
determine another 2-plane s'. We now confine our 
attention to the 2-plane s. (See Fig. 1.) 

Fw. I. Construction of 1. 

Take two spacelike half-lines m and n contained in 
the 2-plane s and starting from the point x. By 
Lemma 6, there are points mx and nx in nI and n, 
respectively, such that [x, nix] and [x, nx] are mapped 
by h to spacelike intervals. Note that [x, nix] and 
[x, nx ] meet an infinite number of spacelike intervals 
starting from the points of Dz which are parallel to l1' 

and whose images by " are intervals. This is obvious 
in view of the fact that, foreachyin Dx,f(y) > kx> 0 
and Dx is dense in IntE (D~). Clearly, these meeting 
points are dense in [x, nix] and [x, nx], whose induced 
topology is Euclidean. Let q be a spacelike interval 
parallel to 1\' which meets [x, m.,,] and [x, nx ] and meets 
Tat a. point of Dx. Let d be the union of closed linear 
spacelike intervals starting from points of Dx , parallel 
to w, whose images are spacelike intervals and which 
are bounded by the straight lines T, nI (or n as the case 
may be), and the interval q. Since the topology 
induced on spacelike intervals is Euclidean and since 
these intervals meet [x, I1lx ] and [x, nx ] in dense sets, 
it follows that ~ (closure taken in the space topology) 
is a triangular area bounded by the above three 
directions. 

Now consider the image h(~). Recall that h[x, mx ] 

and h[x, nx ] are spacelike linear intervals by choice. 
If qll is the closed spacelike linear interval parallel to q, 
starting from Y E Dx and ending with a point on m, 
then each qy is mapped by h to a spacelike linear 
interval (by definition of the function f on T). Thus 
h(~) is a set contained in a 2-plane which is completely 
determined by the intervals h[x, mx ], h[x, nx ], andh(q). 

In a similar manner, if we consider the 2-plane s' 
determined by T and 11", then we get a triangular area 
~' as above and its corresponding image h(~'). 
Observe that ~ n ~' = 1 is an interval. On the other 
hand, since h(~) and h(~') are each contained in a 
2-plane, it follows that hI = h(~ n ~') = h(~) n 
h(~') is a subset of a straight line. We assert that hi is 
connected in the Euclidean topology, i.e., hi is an 
interval. 

Suppose to the contrary that hi is disconnected in 
the Euclidean topology; then there exists a spacelike 
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hyperplane H such that (i) H (") hI = 1> and (ii) both 
components of M S - H have nonvoid intersection 
with hI. On the other hand, in view of Lemma 5, the 
inverse image h-lH is such that only one component 
of ME -h-1H contains points of I. This is a contra
diction, and our assertion is proved, i.e., hI is connected 
in the Euclidean sense; in other words, hI is an inter
val. To see whether hI is spaceJike, timeIike, or light
like is not difficult. Since I is discrete in its induced 
topology, so is hI; therefore, hI is either timelike or 
lightlike. Now choose z E I with x« z, and the proof 
of the lemma is complete. 

Remark 4: In a similar way, one can choose a point 
z' «x such that h[x, z'] = [hx, hz'] with hx « hz' or 
hz'« hx. 

It is necessary at this point to observe that we are 
confining our attention to only one timelike or light
like line and particularly to the part T - S, where S 
is the exceptional set of measure zero. Since S is 
closed in the Euclidean topology of the line, T - S is 
open and therefore a countable union of Euclidean 
open intervals. Let 0 be one of those intervals. We 
shall show in the following lemma that at any point x 
of 0, the partial order « is locally preserved or 
reversed. 

Lemma 9: Let x be a point of 0, and let z and z' 
be determined as in Lemma 8 with z' « x « z; i.e., 
z and z' are oppositely oriented with respect to hx; 
then hz and hz' are oppositely oriented with respect 
to hx. 

Proof: Suppose to the contrary that hz and hz' are 
oriented in the same way with respect to hx, and 
suppose, without loss of generality, that hx « hz and 
hx «hz'. From Lemma 8, we have h[x, z] = [hx, hz] 
and h[x, z'] = [hx, hz']. Consider a spacelike hyper
plane H passing through hx. Clearly, MS - H is 
disconnected, having two components, and (hx, hz] 
and (hx, hz'] are contained in the same component, 
where (hx, hz] denotes the open closed interval from 
hx to hz. On the other hand, in the inverse image, 
(x, z] and (x, z'] are contained in different components 
(via Lemma 5). Thus, we have a contradiction, and 
the lemma is proved. 

Corollary 1: Since the preceding argument applies 
to any point of the interval 0, it follows that, at any 
point 0, h is either «-order preserving or «-order
reversing. In other words, if h preserves (or reverses) 
the order « at any point of 0, then it does so at every 

point of o. This is a direct consequence of the fact 
that any two points of 0 can be contained in a subset 
C which is compact in the Euclidean topology~ 

The next important step will be to examine what 
happens to the points of the exceptional set S, i.e., to 
see how these points are mapped by a homeomorphism 
and whether at such points the order relation « is 
locally preserved or reversed. 

Lemma 10: Let p be a point of the exceptional set S 
such that it is the end point of an interval 0 (as 
described at the end of the proof of Lemma 8), and 
let q be a point of 0; then hlp, q] is connected in the 
Euclidean topology. 

Proof: It is already known from Lemma 8 that hCp, q] 
is connected in the Euclidean topology. Suppose that 
hlp, q] is disconnected in the Euclidean topology; then 
it is possible to disconnect the space M either by 
removing a spacelike hyperplane Hor by removing H', 
which is the homeomorph of a spacelike hyperplane, 
such that H (") hlp, q] = 1> (or H' (") hlp, q] = 1». 
Moreover, hp and hCp, q] are contained in different 
components of M S - H (or M S - H'). On the other 
hand, in the inverse image, it is impossible to dis
connect MS by removing a homeomorph of R3 which 
does not meet [p, q] such that p and (p, q] will be 
in different components. The contradiction proves the 
lemma. 

The following lemma will show that Lemma 9 is 
also valid for points of S. 

Lemma 11: Let XES be the end point of two 
Euclidean open intervals 0 1 and O2 (where 0 1 and Oz 
are subsets of T - S). Let Zt E 0 1 and Zz E Oz be such 
that Zz « x « Zl' i.e., ZI and Zz are oppositely oriented 
with respect to x; then hZl and hzz are oppositely 
oriented with respect to hx. 

Proof: Suppose to the contrary that hZl and hzz are 
oriented in the same way, i.e., assume without loss of 
generality that hx« hZl and hx« hz2 • We already 
know from Lemma 8 that hex, ZI] and hex, zz] are 
piecewise linear and, from Corollary 1, that h either 
preserves or reverses the order of (x, Zl] and (x, Z2]. 
Now take a spacelike hyperplane H passing through 
hx. In view of Lemma 10, it is clear that M S 

- H has 
two components, one containing hex, Zl] and hex, zz]. 
On the other hand, in the inverse image, (x, Zl] and 
(x, zz] are contained in different components of 
MS - h-1H. This is a contradiction, and the lemma is 
proved. 
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Lemmas 9 and 11 together prove that if T is a 
timelike or a lightlike line and h a homeomorphism of 
M S, then hiT, i.e., h restricted to T, is either «
order-preserving or «-order-reversing. It now remains 
to be shown that this remains true globally. 

Lemma 12: Let TI and T2 be two timelike or (and) 
lightlike lines and h a homeomorphism of M S

; then 
TI and T2 are mapped with the same orientation. 

Proof: Suppose to the contrary that h preserves the 
orientation of TI and reverses that of T2. First, assume 
that TI and T2 intersect at a point x. Take a spacelike 
hyperplane H at X; then M S - H has two components, 
one containing T~ and T~ and the other containing T; 
and T; , where {x} U T~ U T~ = TI and {x} U T~ U 

T~ = T2 • On the other hand, M S - hH has two 
components, one containing hT~ and hT~ and the 
other containing hT; and hT~. This is a contradiction. 
Secondly, if TI and T2 are disjoint, then take a third 
timelike or lightlike line T3 which meets both TI and 
Ta. Let TI n T3 = {x} and T2 n T3 = {y}. By 
applying the argument of the first case at x, one 
concludes that h preserves the orientation of T3 , and, 
similarly applying it at y, one concludes that orienta
tion of T2 is preserved, which is a contradiction. Thus 
we have proved that the order relation « is either 
preserved or reversed in M. 

JOURNAL OF MATHEMATICAL PHYSICS 

Theorem 2: The group of homeomorphisms of M S 

is G. 

Proal' Let h be a homeomorphism of Mf',; then, by 
Lemma 12, h either preserves or reverses the order «. 
In the latter case, compose it with the time reflection g 
defined by 

g(xo, Xl' X2' x 3) = (-xo' Xl' X2' x 3), 

so that hog becomes «-order-preserving. By Theorem 
1, either h or hog belongs to Go. In any case h E Go U 
Gog-I = G. This completes the proof. 
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This paper treats the slow-motion approximation for radiating systems as a problem in singular 
perturbations. By using the method of matched asymptotic expansions, we can construct approximations 
valid both in the near zone and the wave zone. The outgoing-wave boundary condition applied to the 
wave-zone expansion leads, by matching, to a unique and easily calculable radiation resistance in the 
near zone. The method is developed and illustrated with model problems from mechanics and electro
magnetism; these should form a useful and accessible introduction to the method of matched asymptotic 
expansions. The method is then applied to the general relativistic problem of gravitational radiation 
from gravitationally bound systems, where a significant part of the radiation can be attributed to non
linear terms in the expansion of the metric. This analysis shows that the formulas derived from the 
standard linear approximation remain valid for gravitationally bound systems. In particular, it shows 
that,according to general relativity , bodies in free-fall motion do indeed radiate. These results do not 
depend upon any definition of gravitational field energy. 

I. INTRODUCTION 
Problems connected with radiation resistance and 

radiation damping have had a long and checkered 
history in classical physics. When early work on the 
motion of bodies in general relativity was extended by 

workers hoping to see radiative effects, difficulties 
appeared and controversies arose, in some cases 
persisting even until today. Some early workers 
claimed that there was no radiation damping, others 
found damping, and a few even found antidamping. 
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Some claimed that freely falling bodies could not 
radiate while others saw no difference between free
fall motions and other motions. Attempts to extend 
the linear theory met logarithmic divergences, and 
these eroded one's confidence in any of the predictions 
of the linear theory. Today we understand most of 
these difficulties, and a consistent, unified picture of 
gravitational radiation is emerging. 

Most early calculations using slow-motion and 
weak-field approximations were sensitive to the order 
of approximations, and different results appeared 
depending upon which limit was taken first. Such 
paradoxical behavior is typical of a class of perturba
tion problems called by applied mathematicians 
"singular perturbations." Paradoxes similar to those 
found in relativity arose long ago in fluid mechanics 
and, indeed, provided the motivation for much of 
modern perturbation theory. One of the major 
achievements of singular perturbations was the 
resolution in 1954 by Kaplun of Stokes' paradox, 
which originated in 1851 and had confused many of 
the best workers in fluid mechanics. l For the slowly 
moving systems studied here, it will be the limits 
r -+ OCJ and v -+ 0 which require careful treatment. 

This paper aims at a straightforward yet complete 
treatment of the slow-motion limit of radiating sys
tems, by means of singular perturbation theory. The 
first part of this paper presents the essential back
ground needed to handle "matched asymptotic 
expansions" and works two simple examples. The 
rest of the paper applies these methods to more 
realistic problems taken from classical electro
magnetism and general relativity. 

Hopefully, the techniques have now been refined 
to the point where harder but important problems 
such as slowly-moving but fully relativistic systems 
and radiation from moving "Schwarzschild" singu
larities may be tackled. Without the methods presented 
here, these problems are probably insoluble. 

A. Technical Background 

For background on the problem of equations of 
motion in general relativity, the reader should see 
the review article by Goldberg.z For background on 
gravitational radiation and the problem of coupling 
it to sources, see Pirani,3 Bonnor,4 or Trautman.s For 
background on the slow-motion approximation, see 
the book by Infeld and Plebanski6 or the review paper 
by Einstein and Infeld.7 Some of the Russian work is 
discussed in Fock.8 These all contain many further 
references. 

The slow-motion approximation scheme was first 
applied in the pioneering paper of Einstein, Infeld, 

and Hoffman.1I They studied the motion of point 
particles, and their approach is now called the EIH 
method. The slow-motion scheme was applied to 
fluids by Chandrasekhar, 10 and in that context is 
called the post-Newtonian approximation. The study 
of radiation from slowly moving systems has been 
carried out by many authors, notably Chandrasekhar 
and his students ,11. 12 Trautman,lS Peres,u. Peres and 
Rosen,15 Carmeli,16 and Infeld and Michalska
Trautman.17 While some of the above workers came 
to the same conclusion as does this paper, they did 
not recognize that the singular nature of the problem 
and the manipulations needed to bring in radiation 
effects are based on ad hoc arguments rather than on 
routine techniques of singular perturbations. Further, 
the EIH work depends heavily on the use of "good" 
d functions, despite the fact that nonlinearities are 
important in the problem. 

To avoid the difficulties involved in treating radia
tion in the slow-motion limit, some workers have 
tried to use only a weak-field approximation, which 
they called the fast-motion approximation. See, in 
particular, Havas,18 Havas and Goldberg,19 and 
Smith and Havas.20 Although their method predicted 
antidamping for the case of gravitationally bound 
systems, this is not in conflict with the results given 
here since for weak-field, bound systems the motions 
are slow. Ignoring this fact leads to an incorrect 
ordering of terms. A crucial part of the radiation 
damping must have been hidden in the "apparently" 
higher-order terms of the fast-motion approach. In 
turn, the work presented here gives little help with 
the antidamping problem associated with the fast
motion approximation. I can only point out (l) that 
the fast-motion method is not well suited for gravita
tionally bound systems (that is, the problem is singular 
and the weak-field and slow-motion limits do not 
commute) and (2) that great care is needed in applying 
coordinate conditions. 

My work does not use harmonic coordinates. I 
find that there are excessively large, time-odd, metric 
perturbations in the near zone which appear in har
monic coordinates and which can easily be (and were 
for a time) misinterpreted as antidamping. 

Some of the above work on the subject addressed 
itself to the task of deriving the equations of motion 
of particles directly from the field equations. I have 
not attempted to repeat that work here, but I have 
used the result of such work that particles move along 
geodesics of the exact metric. I will remark in passing 
that such derivations were hampered by an apparent 
restriction of the particles to uniform motion. The 
resolution of this by allowing implicit as well as 
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explicit dependence on the small parameter can only 
be justified by passing from power series expansions 
to the richer field of asymptotic expansions. Indeed, 
such tricks are common practice in singular perturba
tion theory. 

Expansions using the two small pai:ameters of 
weakness and slowness were used also by Bonnor and 
others21. 22 in what they called the "double series" 
method. Unfortunately, their work did not cover 
gravitationally bound systems. For those systems 
there is a definite relationship between the two 
parameters, and hence we have only one independent 
small parameter. 

B. Summary 

The primary result of the work presented here is a 
method for treating radiation resistance in a slow
motion approximation. The method is applied here 
to the problem of gravitational radiation produced by 
systems moving under the influence of purely gravita
tional forces. For such systems, just as for weak-field 
systems dominated by nongravitational forces (and 
hence described by linearized gravity), the escape of 
radiation is accompanied by the presence of resistive 
forces which react on the radiating system and extract 
the energy that appears in the radiation. This energy 
loss is related to the changing quadrupole moment by 
the same formula as that which is derived using the 
linearized theory. 

Our work differs from the work cited above mainly 
in its use of singular perturbation techniques such as 
matched asymptotic expansions to put the approxi
mation scheme on a systematic foundation. This 
approach emphasizes the role of the nonlinearities in 
providing a replacement for the mechanical stresses 
absent in "free-fall" motion. It also emphasizes the 
care needed in choosing appropriate coordinate 
conditions (gauge conditions). 

Further advantages of this method (although not 
unique to it) are (1) the ability to compute the damping 
terms without having to compute the more complicated 
post-Newtonian and post-post-Newtonian terms, (2) 
the use of resistive forces as opposed to energy con
servation to compute the damping, (3) the easy avoid
ance of singular functions, which have no place in 
nonlinear problems, and (4) the completeness of the 
final solution, which is a uniformly valid approxima
tion both in the near zone· and in the wave zone. 

The introductory section of this paper on singular 
perturbations (Sec. II) provides a simple and readily 
accessible introduction to the ideas of matdhed 
asymptotic expansions. The discussion of the spurious 
solutions introduced by the approximation scheme 

should also be of interest to workers in singular 
perturbations and to those worried by the runaway 
solutions of classical electromagnetism. Tensor spher
ical harmonics are used to simplify the calculations, 
and a brief appendix on these is included. 

II. THE SLOW-MOTION EXPANSION AS A 
SINGULAR PERTURBATION PROBLEM 

The method of matched asymptotic expansions, 
which we will use to study radiation resistance, is 
applicable to electromagnetic problems, acoustic 
problems, and a great variety of other wave-propaga
tion problems. This section will describe the method 
and present two simple examples illustrating the 
ideas. The book by Cole23 should be consulted for a 
more complete treatment of the subject. 

A. Asymptotic Expansions; Regular and Singular 
Perturbation Problems 

It is very important to realize that the expansions 
we will use to find approximate solutions to our 
equations are asymptotic expansions rather than 
convergent power-series expansions. Our techniques 
for matching expansions together will rely on the 
interpretation of the expansions as asymptotic 
expansions. 

To define the terminology, consider a function 
/(x, E) of one or several coordinates denoted by x 
and of a small parameter E. An asymptotic expansion 
of/ex, E), 

00 

f(x, E)""'" "J.fix, E), 0) 
k=O 

is an expansion having the property that 

lim (f(X, E) - !fix, £»)/1'",(£) = 0, (2) 
do k=O 

where the Y",(E) are called "gauge functions." They 
must satisfy 

(3) 

and they provide a set of standard orders of magnitude. 
Here we will be able to use the powers of E as gauge 
functions, but functions such as £ log E • •• occur 
frequently in practice. The infinite sum in Eq. (1) is 
a formal sum which mayor may not converge. Con
vergence is replaced by the more general property (2). 
From a practical point of view, a slowly convergent 
expansion is much less useful than a divergent expan
sion whose first few terms nevertheless give a numeri
cally good approximation for the range of E of interest. 
Such a divergent expansion is asymptotic in the sense 
of Eq. (2). 
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The simplest form of the h is, of course, 

hex, E) = E%(X). (4) 

However, an expansion of type (l) is of interest only 
if the limit in (2) is uniform over the range of x con
sidered. If the assumption (4) gives such a uniformly 
valid expansion, we call the perturbation problem 
regular; otherwise, we call it singular. The usual slow
motion expansion for radiating systems is singular 
in that the limit (2) is not uniform for large radii. 

B. A Trivial Singular Expansion; Matching 

In a singular problem an expansion of type (4) is 
not uniformly valid typically in regions such as 
x = O(E) or x = 0(1jE). In such cases a different 
expansion may be used to represent the function in 
the regions of nonuniformity. These multiple expan
sions may be combined into a composite expansion, 
uniformly valid in the whole x domain considered, 
which does not have the simple form (4) but which is 
still a special case of (1). However, for our purpose it 
will be sufficient to use the multiple expansions without 
constructing the corresponding composite expansion 
explicitly. 

Nonuniformities come up in the expansions of 
even very simple functions. Suppose we want the 
asymptotic expansion for small positive E of the 
function24 

x 

INNER LIMIT INTERMEDIATE OUTER LIMIT 
LIMIT 

~ FIXED ~ FIXED 
X FIXED 

FIG. I. A plot of f(x, £) = 1 + x + £/x, showing the various 
limit processes described in the text. Notice that the figure is 3-
dimensional with axes x, £, and f 

I(x, E) = 1 + x + E/X. (5) one finds for the leading term 

If one assumes an expansion in the sequence 

I(x, E)"'" Io(x) + EJ;.(x) + ... , (6) 

one can find the coefficientsj;(x) by repeated use of the 
limit property (2). The leading term is 

Io(x) = 1 + x. (7) 

We can see from Fig. 1 thatlo is a very poor approxi
mation near x = O. This could have been anticipated 
because the limit used to evaluate 10 was not uniform 
as x ~ O. We call expansion (6) the outer expansion, 
and the limit E ~ 0 for fixed x the outer limit. 

We could take the limit E ~ 0 in such a manner that 
x also goes to zero at the same rate. This results in a 
different ordering of terms and a different expansion. 
This limit, called the inner limit, is most easily taken 
by rewriting our function in terms of a new variable 

x == X/E. (8) 

The inner limit is then E ~ 0 for fixed X. 
Assuming an inner expansion 

Fo(X) = 1 + l/X. (10) 

Again, the limit is not uniform; the inner expansion is 
not uniformly valid for X = O(ljE). 

Singular behavior quite similar to this will occur in 
the expansions that we will make for the fields 
produced by slowly moving sources. There we will 
need to carry the wave-zone boundary conditions from 
an outer expansion into an inner expansion. This will 
be done by matching, one of the most important 
concepts in singular perturbations. 

The basic idea of matching is that there should be 
an intermediate region where both the inner and the 
outer expansions are valid approximations. If they 
both are close to the exact solution in this region, then 
they must also be close to each other. For our model 
function this intermediate region must be one where 
x is small but X is large. Looking at our inner and outer 
solutions [Eqs. (7) and (10)] and the behavior of I 
shown in Fig. 1, we see that a plausible relation is 

Fo( (0) = 10(0). (11) 

This relation is only a special case of a more general 
matching principle. 
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Suppose we look at a function 1J(e) intermediate 
between 1 and e, 

(12) 

for example J E, and define intermediate variables 

x~ == xj1J(e). (13) 

For our intermediate region we pick the region where 
x~ is of order unity; there x is of order 1J(e) (hence 
small as e -+ 0), and X is of order 1J(e)je (hence large 
as e -+ 0). We define an intermediate limit 

lim == limit e ! 0 for x~ fixed, (14) 
~ 

and for a matching condition require that the solutions 
be close in the intermediate limit, that is 

lim (Fo - /0) = o. (15) 
~ 

This matching condition coincides with our intuitive 
guess, Eq. (11). A typical intermediate'limit is indi
cated in Fig. 1. An extensive discussion of the heuristic 
ideas underlying such formal matching can be found 
in the work of Kaplun.25 

C. A Nontrivial Example of Matching 

We can illustrate the ideas of matching and show 
their applicability to radiation problems by consider
ing a highly idealized model problem. Here we will 
solve for the damping of a mechanical oscillator 
coupled to an infinite elastic string, the oscillator 
losing energy by radiating waves out alQng the string. 
The geometry of the situation is sketched in Fig. 2. 

For small slopes the transverse displacement of the 
string obeys the equation 

REST 
POSITION 

o2y o2y 
p ot2 - T ox2 =/(x, t) 

m 

k m 

k 

(16) 

FIG. 2. The geometry of the mass-spring oscillators coupled to 
an elastic string used as a model radiating system. 

where 

y = transverse displacement of the string, 

x = longitudinal coordinate along the string, 

p = mass per unit length, assumed constant, 

T = tension, assumed constant, 

f = transverse force arising from the coupling spring. 

Two identical spring-mass oscillators are weakly 
coupled to the string and are separated by a distance I. 
We need to consider two oscillators in order to intro
duce a length scale for the source into the problem. 
This length together with the wavelength of the waves 
on the string enables us to form a useful dimension
less parameter. 

The relevant dimensioned parameters in this 
problem are the wave speed on the elastic string, a, 
given by 

a == (Tip)!, (17) 

and the natural frequency of the oscillators, w, 
given in terms of the mass m and spring constant k by 

W == (kjm)!. (18) 

We can combine a and w to form a length A, the 
wavelength of waves on the string generated by a 
source moving with frequency w: 

A == 27Talw. (19) 

We shall now restrict our attention to systems where 
I « A and use their ratio 

e == IIA (20) 

as our expansion parameter. 
The other important dimensionless parameters in 

the problem are K, the ratio of the stiffness of the 
coupling springs to the stiffness of the oscillator 
springs (cf. Fig. 2), and (J, the ratio of the stiffness of 
the coupling springs to the stiffness of the string: 

(J := KklJ2T = 27T2K€2mJ pl. (21) 

To simplify the calculations, we shall assume that 
the parameters K and (J are both much smaller than 
the parameter e. Physically this means that the masses 
and the string are very weakly coupled to each other. 

To find the motion of the system, we proceed as 
follows: (i) For any given motion of the masses, we 
compute the motion of the string induced by its weak 
coupling to the masses; (ii) then we find the force 
exerted by the string on the masses and write an 
equation of motion for the masses. This equation 
of motion will contain damping terms induced by the 
radiation on the string, but will not contain the string 
coordinate y(x, t) explicitly. 
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Let us concentrate on the odd mode, having the 
property that 

Z(t) == Z1(t) = -Z2(t), (22) 

where Z1 (t) and Z2( t) are the transverse positions of the 
two masses relative to their equilibrium positions. We 
can do this most easily by imposing the boundary 
condition 

y(O, t) = 0 (23) 

and restricting our attention to positive values of x. 
The forcing term in Eq. (16) is 

j(x, t) = Kk[Z - y(I/2, t)]t.5(x - 1/2). (24) 

Using the physical parameters of the system, we 
can transform to dimensionless coordinates that are 
natural for the system. We introduce a dimensionless 
time 

t* == wI (25) 

and two dimensionless position coordinates 

x* == 21TX/A, X* == 21Tx/1 = x*/£. (26) 

Since X* is normalized by means of I, it is a suitable 
variable for describing the string near the oscillators; 
it is an inner variable. On the other hand, x* is defined 
in terms of the properties of the radiation; it is an 
outer variable, suitable for x» I. The fact that 
different physical processes dominate in different 
regions leads to the use of two different distance 
variables; correspondingly, we also expect that we 
shall need two different asymptotic expansions to 
describe the motion of the string. 

In outer (x*, t*) coordinates the equation of motion 
for the string is 

(27) 

Note that we expect the outer expansion to be valid 
only for x* »£. This region does not include the 
oscillator location x* = £1T; hence there is no forcing 
term in Eq. (27). The outer solution knows about the 
oscillator only through matching with the inner 
expansion. 

In inner (X*, t*) coordinates the wave equation for 
the string reads 

e2y e2y a 
- - £2_ = _ -(Z - ,)d(X* - 1T), (28) 
ax*2 at*2 1T 

where we have introduced the function 

'(t*) == y(l/2, t*/w) (29) 

to represent the displacement of the string at the 
oscillator location. 

Note that since we deal with linear equations, we 
may let Z, y, and, be dimensional and not worry 
about their magnitude relative to I or A. 

The mechanical equation describing the motion of 
.the mass is 

d2Z 
dt*2 + Z + K(Z - ') = O. (30) 

We proceed to find an approximation to the string 
displacement for an arbitrary motion of the mass. We 
assume that there is an asymptotic expansion for y 
valid in the inner limit: 

y"""" A(X*, t*) + £B + £2C· • . • (31) 

Inserting this expansion into the inner equation (28) 
and using the limit process to coUect terms of the same 
order, we obtain the following equations for the terms 
in the inner expansion: 

a2A a - = - - (Z - ')d(X* - 1T) (32a) 
ax*2 1T ' 

a2B 
aX*2 = 0, (32b) 

a2e a2A 
OX*2 = ot*2 . (32c) 

Looking at the leading equation, we can see why 
this is sometimes called the "quasistatic" limit; time 
enters this equation only as a parameter. 

The solution for A is 

A _ (a(Z - ') for X* ~ 1T 
- (a/1T)X*(Z - ') for 0::; X* ::; 1T. (33) 

Since a« £ and A = Om, it follows that we can 
neglect, relative to Z in (33) and write 

A {az for X* ~ 1T 
t"-..J aZX*/1T for 0::; X* ::; 1T. (34) 

In particular, a first approximation for the string 
displacement at the point of coupling is 

W*) t"-..J aZ(t*). (35) 

We have partially solved our problem. Given any 
motion of the masses, Z(I*), we have found the first 
term in the inner expansion for the motion of the 
string. Since this term is time symmetric, there is no 
information about damping in the expansion so far. 

Using the boundary condition at X* = 0, we see 
that the solution B to Eq. (32b) must have the form 

B = ex(t*)X*. (36) 

One is tempted to choose ex = 0 to avoid a divergent 
behavior for large X*. On the other hand, one should 
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expect on the basis of our previous discussion that the 
inner expansion might not be uniformly valid in the 
limit X* -+- 00, since that limit takes us into the outer 
region where other phenomena dominate the equation 
of motion. I f the approximation.is not uniformly valid 
for large distances, then this divergent behavior does 
not mean that the solution actually diverges. One can 
only determine whether or not such a divergent term is 
present by examining the problem in the outer limit 
and then matching the outer expansion with the inner 
expansion.26 

We assume that there is an asymptotic expansion 
valid in the outer limit: 

Y '" F(x*, t*) + EG + . . . . (37) 

All the terms of this expansion must satisfy equations 
of the form 

a2
F _ a2

F = o. 
ax*2 ot*2 

(38) 

We can write the solutions to this equation as traveling 
waves 

F(x*, t*) = W(t* T x*). (39) 

The function W will be determined by matching; the 
upper sign corresponds to outgoing waves at infinity, 
and the lower sign corresponds to incoming waves. 

To match this first term of the outer expansion with 
the inner solution, we first expand it for small x*, 

Yout -+- W(t*) T x*W'(t*) + .. " (40) 

and then rewrite it in inner coordinates, 

Yout -+- W(t*) T EX*W'(t*) + .. . . (41) 

Expanding the inner solution, Eqs. (34) and (36), 
for large X*, we find 

Yin - 0'2(t*) + EIX(t*)X* + . . . . (42) 

The function W appearing in the outer expansion 
is determined by matching the zero-order terms to 
find 

W(t*) = O'Z(I*), (43) 

and the function lX(t*) appearing in the first-order 
term of the inner expansion is then determined by 
matching the first-order terms to find 

dZ 
lX(t*) = TO' - . 

dt* 
(44) 

Thus we see that actually the function B of Eq. (36) 
is nonzero; it is determined uniquely by the wave
zone boundary condition. 

From these results we can find a more accurate 
expression for '(t*) than that given by Eq. (35): 

dZ 
W*),...., O'Z(t*) T E1TO' - . (45) 

dt* 

The O(E) correction to '(t*) is time odd, i.e., it changes 
sign when the boundary condition is changed from 
outgoing waves to incoming waves. Thus this term 
includes the effects of the irreversible loss of energy 
in the radiation. 

Inserting this expression for ,(t*) into our force law 
(30), we find a more accurate equation of motion for 
the oscillator: 

dZZ dZ - + EKO'1T- + (1 + K)Z = 0, 
dt*2 dt* 

(46) 

(taking the upper sign corresponding to the physically 
interesting, outgoing-wave boundary condition). The 
damping causes the motion to decay, with a Q (Q = 
number of radians to lose lIe of the energy) given by 

Q ~ (1TEKO')-l = 2TA.I1TK2kI2. (47) 

If one carries this procedure on to higher orders, 
one discovers that all of the higher terms in the outer 
expansion vanish and that a more accurate expression 
for '(t*) is 

W*) '"" O'(Z T E1TZ' + lE21T2Z" T tE3~211/ + .. '). 
(48) 

This expression leads to a more accurate equation of 
motion (by use of the upper sign): 

(tE3~O'K)2'n + (l + tE21T2KO')Z" 

+ EKO'1TZ' + (I + K)Z = D(E'). (49) 

This is a third-order equation, whose solutions consist 
of two weakly damped, oscillatory modes which are 
perturbations of the modes of the unperturbed 
oscillators, plus a third mode which behaves approxi
mately like 

(50) 

As the equation of motion is made more accurate 
by including more and more terms, (i) more and more 
modes of this third type appear, and (ii) each additional 
term in the equation of motion produces a correction 
to modes of this type which is larger than the last 
correction. The net effect of these corrections is to 
make the complex frequencies of these additional 
modes trace out diverging spirals in the complex 
frequency plane. By contrast, the complex frequencies 
corresponding to the two original modes trace out 
converging spirals. This leads us to suspect that the 
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modes introduced by the higher derivatives are spuri
ous artifacts of the approximation. We can verify this 
suspicion by looking at solutions valid for arbitrary E. 

Our problem can be solved without making the 
assumption that E « 1. Treating only K and (J as small, 
one can derive an equation of motion 

d2Z K(J 
-+(1 + K)Z--
dt*2 217E 

X (r'Z(T) dT - r'Z(T - 217E) dT) = 0, (51) 

involving a time-delayed term. Equations of this type 
are called delay-differential equations.27 Exponential 
solutions 

Z = exp (pt*) (52) 

to this equation satisfy the characteristic equation 

p2 + (1 + K) - (K(J/217Ep)(1 - e-hEj» = 0, (53) 

which has infinitely many roots. In addition to the 
roots which are perturbations of the free oscillator 
frequencies, p = ±i, there are infinitely many roots 
with large damping, one of which is approximately 

p ~ - (217E/9) log (217E/ KG), (54) 

with a logarithmic E-dependence. These roots corre
spond to modes having an integral number of wave
lengths trapped between the poorly reflecting points 
where the oscillators are attached, and leaking away 
rapidly. These modes clearly violate our assumption 
I « it, and the attempts of our approximation scheme 
to describe these modes lead to the spurious solutions, 
which are meaningless. Compare Eq. (50) with Eq. 
(54). 

We can now understand the nature of the approxi
mate equations (46) and (49), which result when the 
integral in Eq. (51) is replaced by derivatives (through 
expansion in powers of E). These equations generate 
corrections to the free-oscillator modes that are more 
accurate as more terms are kept. At the same time, 
new, spurious modes appear which violate the as
sumptions under which solutions of the approximate 
equations are valid approximations to solutions of the 
exact equations. 

Thus we can use approximate equations such as 
Eqs. (46) and (49) as long as we ignore28 the spurious 
modes introduced by our approximation scheme 
[which we can see result from rashly expanding the 
exponential in Eq. (53) even when its argument is not 
small]. Caution is required in using the approxim~te 
equations since some of the spurious modes that 
appear grow exponentially (e.g., the infamous runaway 
solutions of electromagnetism) and would lead to 

instabilities if the equations were being integrated 
numerically.29 

From this example we see that the solution to a 
problem having length scales of different magnitudes 
may be approximated by an asymptotic expansion in 
the dimensionless ratio of these lengths. However, the 
existence of two distinct characteristic length scales 
and thus of two different dimensionless coordinates 
is a warning that the problem may be singular and 
may require the techniques of matching.3D 

III. SLOW-MOTION ELECTROMAGNETISM 

We can simplify the application of matched 
asymptotic expansions to gravity by first discussing 
its application to electromagnetism, where the ideas 
and language are familiar. The gravity section can 
then concentrate on those aspects of the problem 
peculiar to gravity. The details of slow-motion electro
magnetism using matching form a useful exercise, 
or they may be found in the author's PhD thesis.31 

Here we shall give only an outline of the analysis. 

A. The Slow-Motion Formalism 

We can get a system of equations very similar to 
our stretched-string equation if we represent the 
electromagnetic field by a vector potential in Lorentz 
gauge. Thus .we shall work with the field equations 
(c = 1) 

A'';/ = -417j", 

the gauge conditions 

AV;v = 0, 

and the force law 

where 
pall = - gIlV(Av;" - A,,;v)j", 

r = 4"current density, 

pa" = 4-force density. 

(55) 

(56) 

(57) 

In the slow-motion limit, the space and time com
ponents of the vector potential are of different orders. 
We shall keep the sizes of terms explicit by using the 
familiar decomposition into 3-vectors plus scalars. 

We restrict our attention to sources of the electro
magnetic field which move slowly. Here, as before, 
our system has two distinct length scales, the length I, 
characteristic of the size of the source, and the length 
it = 217C/W, characteristic of the motion of the source 
and the resulting radiation. Our slowly moving 
systems satisfy I « it. 

The separation of space into two regions is familiar 
to students of electromagnetic theory, who refer to 
the inner region as the induction zone and the outer 
region as the wave zone. The equations for the terms 
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in the inner expansion will be similar to· the inner 
equations for the string, Eq. (32), and will start off 
with the Poisson equation of electrostatics. The 
equations for the terms in the outer expansion will 
be homogeneous wave equations. 

Several points should be mentioned about the 
slow-motion formalism used here. The slow-motion 
expansions appearing in the literature are often 
written as expansions in inverse powers of the speed 
of light. This is an unfortunate practice. One usually 
expands in a dimensionless parameter if possible. An 
expansion using a dimensioned parameter usually 
turns out to be a coordinate expansion, which cannot 
be made uniformly valid over the entire range of 
coordinates. Here we are definitely dealing with an 
expansion in a dimensionless parameter. 

Another source of confusion arises from using 
"I/e" as an expansion parameter when an outer 
expansion is necessary. This outer expansion is an 
expansion in the same small parameter as appears in 
the inner expansion; yet in the outer limit the I/e terms 
are not considered small compared with the other 
terms. Further, € has a definite value, whereas it is 
more convenient to work in units where e = 1. 
Therefore, I have abandoned the historical practice 
(ElH, Chandrasekhar, etc.) of writing the expansion 
as one in the parameter "I/e." 

Another point concerns our treatment of vectors. 
One steeped in the spirit of relativity might be tempted 
to transform the vector components (i.e., change 
from basis vectors %X* to %x*) when going 
between inner and outer coordinates. If we were to 
do this, the magnitudes of the components of vectors 
would not correspond to their actual physical magni
tudes, and, in addition, we would have to introduce 
a great deal of useless dual notation such as inner 
and outer vector spherical harmonics. Instead, we 
have chosen to refer vectors to basis vectors with unit 
physical length, i.e., the basis vectors determined by 
the physical coordinates rand t. 

B. Electric Dipole Radiation 

Let us look briefly at the slow-motion analysis for 
a system which emits electric dipole radiation. In the 
slow-motion limit,electric dipole radiation will domi
nate the other multipoles in the radiation zone. Specifi
cally, let us look at the fields and forces resulting 
from the slow motion of a "point" charge along the 
z axis. 

Let the position of the charge be given by Z(t). Then 
the charge and current distributions are given by 

p = (q/P)b(X*)b( Y*)b(Z* - U), (58) 
J = (€QfJ3)e.u'(t*)b(X*)b(Y*)b(Z* - U). (59) 

Here we have introd.uced dimensionless inner coordi
nates 

t* == t/A, X* == x/I etc., U(t*) = Z(At*)/I, (60) 

and we have used a prime for the derivative of a 
function with respect to its argument. 

Assuming an inner expansion for the scalar 
potential, 

cp "-' a + €b + ... , (61) 

we solve Poisson's equation 

V 2a = -41Tp (62) 

to find the leading term 

a = q[I(R*2 + U2 - 2UR* cos 0)]-( (63) 

Here R* is a dimensionless inner coordinate, 

R* == r/I. (64) 

For the vector potential, we assume an inner 
expansion 

(65) 

which starts with a term of order € since J is of order 
€p. This keeps a and M the same size. Solving the 
near-zone equation for the lowest-order term in the 
vector potential, 

(66) 
we find 

M = qU'ez[I(R*2 + U2 - 2R*U cos 0)]-1. (67) 

For matching we will need the behavior of these 
solutions for large R*. Expanding, we find 

a -+ q/lR* + qU(t*) cos 0/12R*2 + .. " (68) 

M -+ qU'(t*)ez/IR*. (69) 

The static, monopole part of this expansion matches 
to a static, monopole outer solution with no difficulty. 
The time-dependent dipole terms will radiate, and 
we will need an outer solution corresponding to 
electric-dipole radiation. Note an advantage of using 
two different expansions: The multi pole decomposi
tion need only be made in the outer zone, and only 
there do the low-order multipoles dominate. 

Using spherical harmonics,32 we can write down 
the potentials representing electric-dipole radiation 
directly. The scalar potential must be proportional to 
YIO (axisymmetry implies that M = 0). The vector 
potential must be a combination of Y100 and Y12o ' 

(Y 110 has the wrong parity and belongs to the magnetic
dipole solution.) The outer limit of the inner expan
sion of the vector potential M, Eq. (69), has the 
angular dependence Y100 [recall that YlOO = ez/(41T)!1; 
thus the outer solution that matches to it must be 
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proportional to Y1OO • The radial dependence of the 
outer solution is determined by the wave equations 
and the boundary conditions at r* = 00. (Wave 
equations and their multipole solutions are discussed 
in the Appendix.) The coefficient relating the size of 
the vector potential to the size of the scalar potential 
can be determined from the gauge condition. 

Assuming outer expansions 

cP",P+···, 

A",P+···, 

(70) 

(71) 

we have for the electric-dipole part of the outer 
solution, 

P = Y10[± W'(t* T r*)/r* + W(t* =t= r*)/r*2], (72) 

P = C\/3)Y1OO W'(t* T r*)lr*. (73) 

The function W will be determined by matching, 
the upper sign corresponds to outgoing waves at 
infinity, and r* is a dimensionless radial coordinate, 

r* == rl).. (74) 

By matching the small-r* behavior of the outer 
solution, Eqs. (72) and (73), to the large-R* behavior 
of the inner solution, Eqs. (68) and (69), we determine 
W(t*): 

W(t*) = e2q(trr)tU(t*)ll. (75) 

With this solution for W(t*), Eqs. (72) and (73) 
describe the radiation produced by a given motion 
U(t*) of the charge. 

Expanding the outer solution, Eqs. (72) and (73), 
for small r* to higher orders, we finally come to terms 
that are sensitive to the outgoing-wave boundary 
condition; these are the first terms that can lead to 
radiation damping: 

P --+ ... ±e2q cos ()r*U III (t*)/3! + ... , (76) 

P --+ ... Te2QezU"(t*)11 + . . .. (77) 

As in the string problem, these time-odd terms match 
onto terms satisfying homogeneous equations in the 
inner zone. The leading time-odd terms in the inner 
expansion are thus uniquely determlnec by the 
homogeneous equations 

and the matching requirements 

CPR --+ e3qR* cos ()UII/ (t*)/3/, 

AR --+ e2qezU"(t*)fl. 

(78) 

(79) 

(80) 

(81) 

I refer to the time-odd potentials in the inner expan
sion determined by these equations as "resistive 
potentials"; for the case of outgoing waves, they are 
given by 

CPR = e3qR* cos ()UII/(t*)/3l, (82) 

AR = e2QezU"(t*)fl. (83) 

The force on the charge due to the resistive fields 
coming from these potentials is 

d3Z 
F = iq2e -+ .... 

R • dtS 
(84) 

The scale lengths 1 and ). have dropped out of this 
expression for the force on the charge caused by the 
escape of radiation. They were used only to achieve 
the correct ordering of terms. 

We can use the resistive field given in Eq. (84) to 
write an equation of motion for the charge in which 
all of the degrees of freedom of the electromagnetic 
field have been eliminated. For example, attaching 
our charge to a spring gives us a charged mechanical 
oscillator whose motion will be described by the 
equation 

d2Z d3Z 
m - + kZ - iq2 - + ... = 0, (85) 

dt2 dt3 

and from this we could compute the motion of the 
oscillator, 

Z(t) = Aeirotexp (-2rrrewt/3).), (86) 

having a Q 
Q FI::J 3)'/4rrr •• (87) 

where 

(88) 

The approximate equation of motion (85) will have 
a number of spurious solutions similar to those found 
for the string equation. All modes which are not 
perturbations of the zero-order. undamped, near
zone modes should be ignored. A careful check shows 
that they grow on a time scale so short as to violate 
the requirement 1« c/w. Again these arise because 
the problem has solutions which do not satisfy our 
slow-motion requirement and which our slow-motion 
approximation therefore cannot handle correctly. 

One can simplify the calculation of the resistive 
forces by making use of the invariance of the result 
under a gauge transformation: 

A--+A = A + VX. 

_ aX 
cP--+cP= cp--. at 

(89) 

(90) 
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It is easy to find a X such that the new potentials in the 
outer region have the form 

cp = (1..g;, 

A = W(r, t)YL.Trrl,.M 

(91) 

(92) 

for any electric multipole. The resistive forces can then 
be computed solely from cp, since the vector potential 
A has a radial dependence corresponding to spherical 
harmonics of index L + 1, rather than to L - I as 
it did before the gauge transformation; its forces in 
the induction zone are thus smaller than the forces 
due to the scalar potential by a factor of €2. 

A gauge transformation similar to this will be used 
in the gravity case to greatly simplify both the calcula
tion and the interpretation. Actually, the above gauge 
transformation introduces some time-symmetric terms 
in the near-zone expansion of the vector potential that 
are O(I/€). These do not bother us where we deal with 
linear equations or in very-weak-field gravity, or they 
can be avoided by only transforming the time-odd 
part of the field. 

A great deal can be learned from the similarity 
between gravity and electromagnetism, and even 
closer analogies than those discussed in this paper 
result from the study of electric quadrupole systems, 
such as systems where q/m is the same for all particles. 
Such systems are discussed in the author's PhD 
thesis,31 and are recommended to the reader as an 
instructive exercise. 

IV. SLOW-MOTION GRAVITY 

A. The Formalism of Slow-Motion Gravity 

Unlike our previous examples, Einstein's theory of 
gravitation33 is nonlinear. This means that the 
absolute strength of the field is now important. This 
field strength is characterized by a second dimension
less parameter K, related to the typical size of the 
Newtonian potential U by 

K == U/c2• (93) 

The nature of our approximation scheme depends on 
the relative sizes of the slowness parameter € and the 
weakness parameter K. 34 

One type of expansion is appropriate for systems 
having very weak fields, that is, where 

(94) 

Nongravitational forces dominate such systems, and 
their behavior in lowest order is described by the 
linearized theory of gravity. 

Another type of system has fields that are not so 
weak, but instead satisfy 

(95) 

Gravitational forces can play a dominant role in 
such systems, and a description of their behavior 
requires the inclusion of some nonlinearities even 
when computing the lowest-order gravitational radia
tion. 

One can also conceive of systems for which the field 
strengths are 0(1), i.e., fully nonlinear, and yet whose 
motions are still slow. However, these are very special 
systems, and, moreover, the approximate equations 
describing sUch systems are still nonlinear. 

Here we confine our attention to systems for which 

K = 0(€2). (96) 

We will see that there is no change in the damping 
results as one passes from very-weak-field systems to 
gravitationally bound systems which satisfy Eq. (96). 

We assume that the exact metric *gllv can be ex
panded as a perturbation about the background 
metric gllv , which here we take to be flat space (repre
sented in polar coordinates). We take the expansions 

*gtt'" -1 + t€2tp + €'(tb + tWc) + ... , (97) 

(98) 

*gab""' gab + !€2tpgab 

+ E'(tbgab + Hab - tHCcgab) + ... , (99) 

where here and throughout this paper Latin indices 
range over r, (), and g; while Greek indices range over 
r, (), g;, and t, and tp and Va' etc., are functions of 
r, e, g;, and t. See Fig. 3 for an interpretation of the 
terms in this expansion. 

Our task is to pick the functions tp, Va, and Hab in 
such a manner that the resulting stress-energy tensor 
describes an interesting and realistic physical situation. 
It is trivial but tedious to compute the Einstein tensor 
components corresponding to the metric given above. 
The results of such a computation are 

*Gtt ,,-, _!E2y2tp + ... , (100) 

*Gta ,,-, ti[y2Va - (V. V + 0ttp),a] + ... , (101) 

*Gab ,"" €4{ -ty2Hab + !tp,atp,b + ttptp,ab 

- gab(-{fiVtp. Vtp + !tpy2tp) 

+ HHa?;c + Va.th + HHb~C + Vb,t);a 
- !gab[V • (V • H + otV) 

+ Ot(V • V + Ottp)]} + ... , (102) 

where I have used the convention of representing 3-
vectors in boldface and 3-dyadics in boldface sans 
serif.35 The semicolon denotes a covariant derivative 
in the background space (flat space but curvilinear 
coordinates). These results differ from the results of the 
linearized theory only in the appearance of various 
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"goO (goO 

NEWTONIAN 

FORCES 

POST-POST RESISTANCE 
FORCES 

FIG. 3. A schematic diagram of the inner expansion of the metric drawn for L = 2. Terms in the expansion that are of the same order in 
the near zone are placed vertically above each other. The lines of positive slope connect terms which give rise to near-zone forces of the 
same order. We can see that the vector and tensor parts of the metric are needed to a lower order than the scalar (time-time) part. The 
lines of negative slope connect terms which contribute to radiation of a given order. The lower multipolarity of the vector and tensor parts 
increases their size in the wave zone relative to the scalar part. The X. and X.b are terms removed by our gauge transformation. 

squares of the Newtonian potential in the space
space components and in time derivatives being 
considered small. 

The expressions for the components of the Einstein 
tensor can be simplified considerably if our functions 
satisfy the auxiliary conditions 

V· V + at"P = 0, 

V· H + atv = 0, 

which I refer to as "gauge conditions." 
In this case the Einstein field equations 

become 

where 

G",v = 81TT",., (G = 1, c = 1) 

'iJ21p = -161T P, 

'iJ2V = -161TJ, 

'iJ2H = -161T[S + GS], 

(103) 

(104) 

(l05) 

(106) 

(107) 

(108) 

p == Ttt , energy density, (109) 

la == - T la , momentum flux, (110) 

Sab == Tab' material stress, (111) 

GSab == (-17T)[11Jl.a1Jl.o + t1Jl1Jl.ao 

- gab(-{aV"P • V"P + t"P'iJ2"P)], 
gravitational stress. (112) 

The gauge conditions (103) and (104), together with 
the field equations (106)-(108), require the sources 
to satisfy the conservation laws 

V· J + atp = 0, 

V· (5 + GS) + 0tJ = 0, 

(113) 

(114) 

which we recognize as the equations of mass con
servation and of momentum conservation (F = rna). 
In turn, the above conservation laws imply that if 
the gauge conditions are satisfied by some initial
value data, then the gauge conditions will be satisfied 
for all later times. If we do not impose the above 
conservation laws (force laws), then additional terms 
appear in *Gab to compensate. 

We can easily compute the "gravitational force" 

(115) 

This "P is related to the Newtonian potential U by 

"P=4U, (116) 

as can be seen from Eq. (106). Thus we have recovered 
Newtonian gravity from Einstein's general relativity. 

This formalism that we have described has an 
invariance similar to the gauge invariance of electro
magnetism. In gravity it arises from the possibility of 
describing a physical system in different coordinate 
systems. Many different metrics *g",v represent the 
same physical system. Expressed in terms of our 
space-time split, the transformation 

"P-ip="P+v·X-atX, (I 17) 

V........, V = V + Vx - atX, (I 18) 

Hab - Hab = Hab + Xa;b + Xb;a - gab(V • X + 0tX) 
(119) 

leads to a new metric having the same distribution of 
matter at lowest order, although not necessarily one 
satisfying the gauge conditions (103) and (104). 
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B. The Calculation of the Radiation 

The electromagnetic radiation in Lorentz gauge 
was dominated by Y LM in the scalar potential and by 
Y L.L-l.M in the vector potential for som.e value of L. 
The radiation satisfied the Lorentz gauge condition, 
and the Y L •L - 1.M multipole moment of the current 
distribution was therefore determined by the YLM 
multipole moment of the mass distribution. In fact, 
we have 

-!dqLM 
aLM(t) = [L(2L + 1)] --, (120) 

dt 
where 

(121) 

aLM(t) == f yt.L-l.M· J,-L-l dV, (122) 

which follows directly from the law of conservation of 
current through integration by parts. 

In gravitational radiation a similar situation arises. 
The equation of continuity, Eq. (113), leads to the 
same relations (120)-(122) connecting mass and 
momentum multipoles. In addition, the conservation 
law for momentum, Eq. (114), determines the stress 
multipole appearing in the radiation: 

where 

dLM(t) = [(L - 1)(2L - 1)r* daLM , (123) 
dt 

dLM(t) == f Tt.L-2.M· (S + GS),-L-2 dV. (124) 

Thus, in the slow-motion limit the radiation fields 
have the asymptotic behavior 

'IjJ ~ YLMf(r, t), (125) 

v ~ YL.L-l.Mg(r, t), 

H ~ T L.L-2.Mh(r, t), 

(126) 

(127) 

and the dominant part of the radiation is determined 
completely by the mass multipole moment qLM(t). 
There is no change in the radiation caused by a pre
scribed mass multipole distribution as one goes from 
the very-weak-field limit, where the dominant stresses 
are mechanical stresses S, to the post-Newtonian 
limit, where the dominant stresses contain some 
gravitational stresses GS, since it is the sum of these 
stresses which appears in both the conservation law 
(114) and the source equation for the radiation (108). 
One must, of course, include gravitational forces in 
determining the motion of post-Newtonian systems, 
whereas one can neglect it for very-weak-field sys~ms. 
Since the damping comes directly from the radiation 
[cf. Eqs. (76) and (77) in the electromagnetic example], 
it too will be determined if one knows only qLM(t). 

C. The Calculation of the Damping 

Our formalism of slow-motion gravity is nearly 
identical to classical electromagnetism. Aside from 
the additional dyadic field, one can nearly copy the 
electromagnetic calculations line for line. That is why 
we paid so much attention to the electromagnetic 
problem. Here we can now concentrate on the results 
and their interpretation. 

In electromagnetism the near-zone source equation 
is 

V2cp = -47Tp, (128) 

while in the gravitational case, Eq. (106), it is 

V2(t'IjJ) = -47Tp. (129) 

The dominant force in the slow-motion (Newtonian) 
limit comes from the scalar potential. The electro
magnetic force law is 

F = -qVcp, (130) 

while the gravitational force law (l15) is 

F = mVU'IjJ). (131) 

From this we see that both theories have inverse 
square static forces, although in gravity likes attract 
likes because of the sign difference. 

In both theories we calculate the dominant part of 
the near-zone field from the source equations (128) or 
(129); we then match this to the waves of the radiation 
zone; and we finally match those waves back into the 
near zone to get the damping terms associated with 
each multipole. We then use gauge transformations 
to put the damping terms into new forms. In these 
new forms the damping force is determined to lowest 
order by the leading time-odd part of the transformed 
scalar potential. The vector and tensor potentials 
contribute only in higher order. The gauge trans
formations, along with tensor spherical harmonics 
and multipole solutions, are discussed in more detail 
in the Appendix. The result for electromagnetism 
(electric-parity modes) is 

q; = - [(L + 1)/L]cp, 

while for gravity it is 

(132) 

if = [(L + 1)(L + 2)/(L - I)L]'IjJ, (133) 

where L is the muitipoie index, q; and ijJ are the gauge
transformed scalar potentials, and cp and 'IjJ are the 
untransformed ones. 

The sign difference between these equations cancels 
the sign difference in the force law, and so it is clear 
that any gravitational multi pole has a resistive field 
such as we found for electromagnetism [see Eqs. (82)
(84)], but which is (L + 2)/(L - 1) times as strong as 
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the corresponding electromagnenc resistive field. Since 
electromagnetism always damps, so must gravity. 

From the above outline we can see that the gravita
tional calculation reduces to a calculation of the factor 
(L + 1)(L + 2)/(L - I)L appearing in the gauge 
transformation (133). This calculation is discussed in 
more detail in the Appendix. 

D. Results 

The slow-motion formalism presented in this paper 
differs from the standard slow-motion work by intro
ducing additional fields, called resistive fields. These 
fields have potentials which satisfy homogeneous 
equations and which diverge for large distances. 
Their introduction is not arbitrary, but is required if 
the solutions in the near zone are to match properly 
with purely outgoing radiation in the wave zone. 
Their divergence for large radius does not reflect a 
physical divergence, but only indicates the nonuni
formity of our inner expansion for large radius. These 
resistive fields can be calculated directly from the 
Newtonian motions, as can the radiation. 

These resistive fields act on all of the matter in the 
induction zone. The resistive force F R acting per unit 
volume on the mass density p as a result of the 
gravitational radiation emitted by the changing mass 
multipole moment qLM(t) is given by 

F = (_)L+14rr
(L + 1)(L + 2») [(2L + I)L]l 

R L(L _ 1) [(2L + 1)!!]2 p 

d(2L+lIqLM(t) L-l 
x t dt(2L+1) r YL.L-l.M' (134) 

done by the force is given by 

dE f F d f L-l -:it = V· II V oc J. YL.L-1 •. llr dV, (137) 

which is proportional to the (L, L - I, M) vector 
multi pole moment of the mass current. This is deter
mined by the mass multipole moment [cf. Eq. (121)]. 
Using Eqs. (135), (137), and (121) and adding some 
perfect derivatives to our expression, we find that the 
power extracted by the resistive field is 

dE 4rr(L + 1)(L + 2) 
-=-
dt L(L - 1)[(2L + 1)!!]2 

x ~ L.ll + - (138) (
d(L+1)q )2 dX 

.u dt(L+1) dt ' 

where X is some function of qLM and its derivatives. 
For periodic (or bounded) motions the time derivative 
term averages to zero, and energy is extracted from 
the source. Remember that here L is the first nonzero, 
time-dependent multipole moment of the mass 
distribution. 

For the special case of harmonic motions we define 
an amplitude q by the equation 

qLM(t) = qUit cos wt. (139) 

In this case the mean energy lost per radian is 

1 / dE\ 2rr(L + 1)(L + 2)W2L+l • 2 

~ \-:itj = - L(L -1)[(2L + 1)!!]2 t(qL.1I) ' 
(140) 

which for L = 2 becomes 

/ dE\ (4 rrw6) ~ ( . )2 \-:it/ = - 7s f; q2M . (141) 
where the multi pole moment is defined by 

qLM(t) == f YtMrLp(r, n, t) dV. 
A useful form of this expression can be found by 

(135) introducing a typical length I and a typical mass M 
such that 

This is calculated by taking the solution to Eq. (106) 
corresponding to the LM multipole moment, multi
plying it by the gauge transformation factor [see Eq. 
(A36)] and taking the leading time-odd part of the 
radial dependence [see Eq. (A22)]. This is just 
(L + 2)/(L - I) times the corresponding electro
magnetic expression. The L = 2 case is the only one 
with resistive forces large enough to be of physical 
interest. In that case36 

(136) 

The direction ofthis resistive force is such as to lead 
to an extraction of energy from the source. The work 

! (q2M)2 = f32M 2l', 
M 

(142) 

where f3 is a numerical factor of order unity. In this 
case we can write the energy lost per radian as 

(dE/dt) = _ 4rr{J2 GM
2
(2rrl\5. (143) 

w 75 I A J 

The second term in this expression is an energy of the 
size of the gravitational binding energy. Thus we see 
that the system radiates a small fraction of (-- E5) its 
gravitational binding energy per radian. All of the 
energy-loss formulas presented here agree with those 
derived from the Landau-Lifshitz pseudotensor using 
the elementary linear theory.3? 
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For completeness we can also consider the magnetic
parity multipoles. In cases of high symmetry, but not 
in general, these can compete at lowest order with the 
electric-parity modes. The same type of reduction can 
be carried through to show that the gravitational 
damping of these modes is just L/(L + 1) times as 
strong as the electromagnetic damping of the corre
sponding mode. 

If we define a mass-current multi pole moment 
dLM(t) by 

dLM == f YhM' JrL dV, (144) 

then the resistive fields turn out to be31 

F R = (- )L+141TL(L + 1)-I[(2L + 1)!tr2 

X L d~ft2)(t)yLYLLM' (145) 
M 

and the power extracted per radian for harmonic 
motions is 

(dE/dt) = -81TL(L + 1)-1 
w 

X [(2L + 1)!!r2w2L+1 ~ (dLM)2. (146) 
M 

E. Interpretation 

The procedures outlined above have been carefully 
chosen to avoid several sources of confusion. These 
pitfalls will be mentioned here so that those interested 
in extending the results will not have to waste time 
on them. 

One perhaps obvious point is that the formulas are 
only valid for the first multipole moment of a given 
parity which has a nonzero time derivative. Otherwise, 
the small corrections to the lower multipoles would 
lead to errors as large as the effects of the higher 
multipoles. Also, there may be radiation from post
Newtonian corrections to the lower multipoles (such 
as kinetic energy corrections to masses) which should 
be included. This is often the case with magnetic
parity modes. 

Another point is that one cannot always compute 
the resistive force from the force law 

FR = !mV'PR' (147) 

Before the gauge transformation was used to simplify 
the problem, the lower L dependence oft,..'1e vector and 
tensor potentials allowed them to compete with the 
scalar potential, and one had to use a more complete 
force law (derivable by writing the equations for a 
geodesic of *g/lV in terms of g/lV and h/lv)' 

An important point concerns the physical interpre
tation of these results. The integration of the equations 

of motion resulting from the "pseudoforce" law allows 
one to write down the development of the system 
referred to some coordinate system. The big difference 
between gravity and electromagnetism now appears. 
The electromagnetic field produces effects only 
through its force law. On the other hand, not only 
does the gravitational field affect the coordinate 
motion of the system, but the potentials themselves 
determine the clock rates and the behavior of rigid 
bodies. Until one knows the H field, one cannot 
convert coordinate differences into proper length 
without making errors that are 0(K}.38 For the most 
part we will not need amplitudes any more accurately 
than 0(1). However, there are situations where such 
an error can make a big effect, and this should be 
kept in mind. 

F. Conclusion 

This paper has developed the methods needed to 
include the irreversible escape of radiation in a slow
motion expansion. The energy lost in the escaping 
radiation is calculated by finding the work done on the 
radiating system. The calculation was done for field 
strengths appropriate to gravitationally bound sys
tems, rather than the infinitely weak fields of the 
linearized theory, and the formulas of the linearized 
theory were found to apply to both cases. 
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APPENDIX: TENSOR SPHERICAL HARMONICS 
AND MULTIPOLE RADIATION 

This appendix contains material useful for solving 
the tensor wave equation in spherical coordinates. 

When studying radiation from confined systems, 
we can introduce a great deal of simplification by 
separating the sources and the solutions into "multi
poles," having simple behavior under rotations. The 
ordinary wave equation does not mix the multipoles, 
and for slow motions only a few multipoles will 
dominate the radiation field. 

The angular functions that will be defined here have 
the following features. They behave simply under 
rotations, forming irreducible representations of the 
rotation group. They have simple formulas for their 
gradients, curls, and divergences. Finally, they can be 
computed with relative ease. 

The material in this appendix is presented, not 
because it is original, but because it is relatively 
inaccessible. Tensor spherical harmonics were devel
oped from the rotation group by Mathews.39 
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Throughout this paper I have followed the conven
tions of Edmonds,32 a,nd his book contains all that is 
needed to supplement the material presented here. 

A. General Features 

We will define special tensors T JLM' having 
properties similar to the vector spherical harmonics 
Y J LM .40 These T J LM will be called tensor spherical 
harmonics and are sim1.Jltaneous eigenfunctions of S2, 
where Sx, SII' and S. are the generators of rotations 
for a second-rank tensor, of L2, where Lx, L II , and 
L. are the generators of the rotations of a function of 
spatial variables, and of J2 and J., where 

J = L + S. (AI) 
Thus 

L2TJLM = L(L + l)TJLM , (A2) 

J 2TJLM = J(J + l)TJLM , (A3) 

J.TJLM = MTJLM · (A4) 

These tensor spherical harmonics are combinations 
of constant basis tensors and scalar spherical har
monics. Thus the Laplacian of the tensor field 
rp(r, t)T JLM(O) depends only upon the L value 
(spatial dependence): 

V2(rpTJLM) = [r-Ia~(rrp) - L(L + 1)r-2rp]TJLM . 

(AS) 

When forming tensor multipole solutions, we can 
use the same radial functions as are used with scalar 
multipoles and vector multipoles. 

B. Tbe Radial Equation 

Let us define an operator WL by 

WL == r-la~(rcp) - L(L + 1)r-2rp - a~rp. (A6) 

We are interested in homogeneous solutions satisfying 

(A7) 

The solution of Eq. (A7) for L = 0 is 

rpo = F(t =f r)/r, 

where F can be any function of one variable. 

(Al3) 

Solutions of higher L values may be obtained by 
using D+ repeatedly. We have, for example, 

F'(t =f r) F(t =F r) 
rpl = ± 2 ' 

r r 
(AI4) 

F"(t =F r) 3F'(t =F r) 3F(t =F r) (AIS) 
rp2 = ± 2 + 3 

r r r 

(normalizing the l/r term). We can conveniently 
abbreviate these radial solutions by writing just the 
leading term and the L value. Thus we write the 
L = I solution 

(A16) 

and our raising and lowering operators applied to 
these radial functions yield new radial functions 
according to 

Dt{Fh = =F{F'h+l' 

Di{F}L = =F{F'}L-I' 

(AI7) 

(AIS) 

These raISIng and lowering operators will appear 
throughout the formulas for the gradient, divergence, 
etc., of our spherical harmonics. 

These functionals {F} have been normalized by the 
size of their radiation (that is, the size of their I/r 
terms). We will also be interested in their behavior for 
small r. This can be found from a Taylor's series 
expansion of 

{Fh,+L)(t =F r)}L = (1=)L(ff D:){F(V)(t 1= r)}o, 

(A19) 
which gives us 

{F(Q)(t =F r)}L 
00 

= 1 [(p - l)(p - 3)· .. (p - 2L + l)J 
v=o 

F(V+Q-L)(t -r r) 
X r(v-L-l) T. (A20) 

p! One can verify41 that if rpL is a solution, that is 

WLrpL = 0, (A8) The leading term in the small r limit is the p = 0 term 

then 
WL+l(()r - L/r)rpL = 0 (A9) 

and 
W L-I[Or + (L + l)fr]rpL = O. (AIO) 

These relations give us raising and lowering operators 
for the solutions rpL' We abbreviate these 

D! =:: Or - L/r, 

Di == Or + (L + 1)/r. 

(All) 

(A 12) 

{F(Qlh -+- (±)L(2L - I)!! r-L-1F(Q-Ll(t), (A2l) 

and the leading time-odd term in the small r limit is 
the p = 2L + I term 

F1L+Q+1)(t) 
[{F(QJ} ] __ (=F)L+1rL . (A22) 

LR (2L+l)!! 

This term is time-odd relative to the induction field, 
p = 0 term, and determines the time-odd effects in 
the small r limit. 



                                                                                                                                    

GRAVITATIONAL RADIATION DAMPING OF SLOWLY MOVING SYSTEMS 417 

C. Tensor Spherical 'Harmonics 

The general tensor is not an irreducible representa
tion of spin 2 at a point. The trace behaves like a 
scalar under rotations and the antisymmetric part like 
a vector. The spin-2 part of a tensor is its traceless, 
symmetric part. 

We can easily generate a suitable set of basis 
tensors by combining the basis vectors used for the 
vector spherical harmonics, 

(A23) 

Wedefinefivebasistensorst",p = -2, -1,"', +2, 
by 

tp == 2 (1sIs' I 1 12p)eses ' , (A24) 
88' 

where Ul m1j2 m2ijlj2jm) is a Clebsch-Gordan 
coefficient. 

Using these basis tensors, we can construct tensor 
fields that are suitable eigenfunctions, taking 

angular momenta") gives us 

(VrpYJLJ[ + rrYn.lIV) -il(V. rpYJLJJ) 

= (_ )J-t.L+12(5)~ 

( 
t + (L + 1 1 L}T 

x -(L + 1) DLlfl 1 J 2 J.L+l.JJ 

+ LtDJ-"JL - 1 1 L}T ) (A28) d'l 1 J 2 J.L-l.lJ, 

where 

(A29) 

D. Multipole Fields 

By combining the tensor spherical harmonics 
defined in Eq. (A25) with the solutions of the radial 
equation constructed in subsection B of this appendix, 
we can easily write down multipole solutions of the 
weak-field equations (106)-(\08). 

Solutions having "electric parity" may be written 
as 

T JLJ[ == 2 (LS2S' I L2J M) YLstS-' (A25) H = [(2L + 1)(2L - I)/L(L - I)]! 
.~S· 

Perhaps the most useful formulas for these tensor 
fields relate the divergence of a tensor spherical 
harmonic to vector spherical harmonics. One can 
write this in the form 

v . (q;TJLJlI) 

= (_ )J+L+l5t 

x (-(L + l)t{L ~ 1 ~ ~}YJ.L+l .. llDtq; 

+ Lt{L~ 1 ~ ~}YJ.L-l.lIIDLq;), (A26) 

where the symbol 

{ ~l j~ ~12} 
]a J 123 

is a 6-j symboL These can be either looked Up42 or 
calculated from the formulas given in Edmonds. 

In discussing the gauge transformations useful in 
weak-field gravity, we will need the symmetrized 
gradients of our vector spherical harmonics expressed 
as tensor spherical harmonics. We define these by 

(VV + VV)ab == OaVb + 0bVa, a, b = x,y, z. 

(A27) 

A straightforward computation ("addition of 3 

x {F<Ll(t T r)}L-2TL.L-2 .. 1I, (A30) 

v = ±[(2L + l)/L]!{F<Ll(t T r)h-lYL.L-l.J[, 

(A31) 

(A32) 

or as 
_ 1 

Hab = [(2L + 1)(2L + 3)/(L + 1)(L + 2W 

x {G(L)(t T r)h+2(TL •L+2 •• 11)"b' (A33) 

V = T[(2L + 1)/(L + I)]! 
X {G(L)(t T r)}LHYL.L+l.JJ' (A34) 

(A35) 

These will be different representations of the same 
solution and related by a gauge transformation 
[Eqs. (117)-(119)], provided that 

if = [(L + 1)(L + 2)/L(L - 1)]1p. (A36) 

This is calculated by writing the gauge functions X 
and X as multipoles of appropriate J value and parity, 
taking the radial functions to be the appropriate 
radial solutions (A20), using the formulas for spherical 
harmonics, especially Eq. (A28), to differentiate these 
terms, and finally picking the coefficients of the terms 
of X and X so that the transformed fields have the 
form of Eqs. (A33)-(A35). 
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"Magnetic-parity" solutions (i.e., those which 
couple to mass currents) may be written as 

H = ±[2(2L + 1)/(L - 1)]1 

x {p(L)(t =F r)h-lTL.L-l,M, (A37) 

V = {p(L)(t T r)hYLLJ1 , (A38) 

V' = 0 (A39) 

or as 

flab = =F[2(2L + 1)/(L + 2)]1 

x {GCLI(t T r)h+l(T L.L+l .. ll)ab, (A40) 

"\T = {G(L)(t =F r)hYLL"lI' (A41) 

ip = 0, (A42) 

and these will be representations of the same solution 
provided that 

"\T = -[L/(L + l)]V. (A43) 
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Solution of the One-Dimensional N-Body Problems with Quadratic 
and/or Inversely Quadratic Pair Potentials 
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The quantum-mechanical problems of N I-dimensional equal particles of mass TIl interacting pairwise 
via quadratic ("harmonical") and/or inversely quadratic ("centrifugal") potentials is solved. In the 
first case, characterized by the pair potential !mw'(xi - Xj)' + g(Xi - Xj)-', g > -11'/(4111), the com
plete energy spectrum (in the center-of-mass frame) is given by the formula 

v 
E = IIw(lN)I[HN - I) + ~N(N - I)(a + n + ~ In,], 

!~2 

with (/ = HI + 4mgh-2)!. The N - 1 quantum numbers n, are nonnegative integers; each set {n,; 
1= 2, 3, ... , N} characterizes uniquely one eigenstate. This energy spectrum can also be written in the 
form E, = hwUN)1 [!(N - 1) + iN(N - l)(a + U + .1'1, s = 0,2,3,4, ... , the multiplicity of the 
sth level being then given by the number of different sets of N - 1 nonnegative integers n, that are 
consistent with the condition s = ~i'.:,2In,. These equations are valid independently of the statistics 
that the particles satisfy, if g '" 0; for g = 0, the equations remain valid with (/ = i for Fermi statistics, 
a = - ~ for Bose statistics. The eigenfunctions corresponding to these energy levels are not obtained 
explicitly, but they are rather fully characterized. A more general model is similarly solved, in which the 
N particles are divided in families, with the same quadratic interaction acting between all pairs, but with 
the inversely quadratic interaction acting only between particles belonging to the same family, with a 
strength that may be different for different families. The second model, characterized by the pair potential 
g(Xi - Xj)-', g > -h'/(4m), contains only scattering states. It is proved that an initial scattering con
figuration, characterized (in the phase space sector defined by the inequalities Xi :?: Xi. 1, i = 1,2, ... , 
N - I, to which attention may be restricted without loss of generality) by (initial) momenta pi, i = I, 
2, ...• N, goes over into a final configuration characterized uniquely by the (final) momenta p; , with 
p; = P.V+l-i' This remarkably simple outcome is a peculiarity of the case with equal particles (i.e., equal 
masses and equal strengths of all pair potentials). 

1. INTRODUCTION 

The motivation for a physicist to study I-dimen
sional problems is best illustrated by the story of the 
man who, returning home late at night after an 
alcoholic evening, was scanning the ground for his 
key under a lamppost; he knew, to be sure, that he 
had dropped it somewhere else, but only under the 
lamppost was there enough light to conduct a proper 
search. In a more serious vein, a motivation is per
ceivedl in the insight that exact solutions, even of 
oversimplified models, may provide, and in the 
possibility to assess the reliability of approximation 
techniques that can be used in more realistic contexts, 
by first testing them in exactly solvable cases. More
over for some physical problems a I-dimensional 
schematization may indeed be appropriate. And a 
final argument emphasizes the formal elegance that 
exactly solvable models often reveal. 

There do not exist many examples of N-body 
problems with pair forces that can be solved exactly, 
even in one dimension. The case with only quadratic 
("harmonical") potentials may be reduced, by a 
linear reshuffle of the particle variables, to a problem 
with decoupled oscillators; thus it can easily be 
solved, both in the classical and quantal cases, and 

in a space with any number of dimensions. However, 
just because it can be reduced to a problem with 
decoupled variables, it is not so interesting as an 
example of many-body dynamics, though of course 
it is quite important from other points of view (for 
instance, to provide a denumerable basic set of 
eigenstates for the description of the system). The 
only other known solvable example, first introduced 
by Berezin, Pochil, and Finkelberg and by McGuire, 
is that of N equal-mass particles interacting in one 
dimension via 2-body equal-strength zero-range b
function potentials.2 This example is very interesting, 
especially in the case of attractive forces, when a 
collection of many-body bound states exist.3 But 
the zero-range character of the forces, implying that 
two particles interact only when their positions 
coincide, reduces the problem, at least in the classical 
case, to a sequence of 2-body processes, whose out
come is primarily determined by kinematics alone 
(energy and momentum conservation imply that in a 
I-dimensional 2-body collision between equal-mass 
particles no new momenta can be produced; the two 
particles either maintain their initial momenta or 
exchange them). And indeed, as remarked by 
McGuire, it is just because this simplification is 

419 
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maintained in the quantal case (for equal particles) 
that the problem is also solvable in this case. 

In this paper we present a rather complete analysis 
(in the framework of quantum mechanics) of two new 
I-dimensional N-body problems that bear some 
resemblance to the two models mentioned above. 
The first problem considers N equal particles inter
acting via pair potentials that are the sum of a 
quadratic ("harmonical") plus an inversely quadratic 
("centrifugal") term: 

Vex; - x j ) = imm2(x; - XJ2 + g(x; - Xj )-2, 

g> -1i2J(4m). (l.l) 

For N = 3 this problem was completely solved 
recently, i.e., all its eigenvalues and eigenfunctions 
were explicitly exhibited. 4 Moreover, in the N-body 
case, a subset (including the ground-state) of the 
wavefunctions and energy levels were found, and the 
conjecture was put forward that, irrespective of 
the statistics that the particle obey (Boltzmann, Bose, 
or Fermi), the complete energy spectrum for this prob
lem differ from the spectrum of the corresponding 
problem with g = 0 (I.e., with only harmonical forces) 
and with Fermi statistics, only by the (N-dependent) 
constant5 

fl/!,E = tN(N - 1)/iwON)it[(l + 4mg/i-2)! - I]. 

(1.2) 

This conjecture is validated in the present paper by 
a computation of the complete spectrum. Indeed we 
prove that, irrespective of the statistics (Boltzmann, 
Bose, or Fermi) that the particles obey, the energy 
spectrum (in the center-of-mass frame) of the 1-
dimensional N-body problem with the pair potential 
(1.1) (with g"'" 0) coincides (except for a constant 
shift of all energy levels) with the energy spectrum of 
the corresponding problem with only harmonical forces 
(g = 0) and identical particles (bosons or fermions). 
The shift has the value 6. p E, Eq. (1.2), relative to the 
fermion case, and 

flnE = tN(N - l)/iw(tN)tt[(1 + 4mg/i-2)! + I] 
(1.3) 

relative to the boson case. The coincidence of these 
spectra (after the shift has been taken into account) 
refers not only to the values of the energy levels, but 
also to their multiplicities. This result also implies the 
coincidence [except for the energy shift 

-t:..pE + 6.nE = iN(N - l)/iw(iN)t] 

of the spectra of the I-dimensional N-body systems 
with only harmonical forces and Fermi or Bose sta-

tistics.6 It should be emphasized that, even though 
the spectrum of the N-body system under considera
tion coincides, except for a constant shift, with that 
of the N-body system with only harmonical forces 
and Bose or Fermi statistics, the presence of the 
additional "centrifugal" potential excludes the possi
bility of reducing the problem to one with decoupled 
variables by a simple redefinition of the particle 
variables. 

The second model that we study might be regarded 
as a special case of the first, obtained eliminating 
from it the harmonical potential, i.e., setting Q) = O. 
But, in fact, the two models differ qualitatively, 
because, in the first case, the energy spectrum (in the 
center-of-mass frame) is discrete, and only localized 
states are allowed (corresponding to classical orbits 
that are restricted to a finite phase-space region; in 
fact, these classical orbits are presumably all closed7), 

while in the latter case the spectrum is continuous 
and only scattering states occur. The solution of the 
scattering problem for this model in the 3-body case 
was evinced by Marchioros from the stationary 
eigenfunctions given explicitly in Ref. 4. He proved 
that, both in the classical and the quantal cases, an 
initial "ingoing" scattering configuration, characterized 
(in the sector of configuration space defined by the 
inequalities Xi ~ XH1' i = I, 2, ... , N - 1, to which 
attention may be confined without loss of generality; 
see below) by the momenta Pi' i = 1, 2, ... , N, goes 
eventually over into a uniquely determined "outgoing" 
configuration characterized by (final) momenta p~ 
determined by the simple rule 

P; = PN+1-;' i = 1,2, ... , N. (1.4) 

This remarkable outcome (proved by Marchioro for 
N = 3) coincides with that that obtains in the case 
of infinitely repulsive b-function potentials. However, 
while in the 6-function case this result is, at least in 
the classical case, quite trivial, because, as mentioned 
above, the zero-range character of the forces reduces 
the scattering process to a sequence of 2-body en
counters whose outcome is determined by kine
matics alone,2 in the present case, owing to the long 
range character of the interaction, the simple relation 
(1.4) between the asymptotic momenta obtains after 
a quite complicated, definitely nontrivial, time 
evolution. In this paper we prove that, as conjectured 
by Marchioro,8 also in the N-body case the remarkable 
rule of Eq. (1.4) obtains. The proof is done directly 
in the quantal case; clearly the validity of the result 
also in the classical case is implied (but a detailed 
proof through the explicit solution of the equations 
of motion would be a nontrivial task). Arguments are 
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also given that imply that the simple rule (1.4) is 
characteristic only of the case with equal particles 
(i.e., with equal masses and equal coupling constants). 

Let us finally emphasize the two features of the 
models considered in this paper that presumably 
have more potential for applications, especially for 
testing approximation techniques: the singular nature 
at zero range of the inversely quadratic potential, 
and its long range. 

The first model is treated in Sec. 2; in Sec. 3, a 
generalization of it is discussed, where the N particles 
are divided into families, and there are equal quadratic 
potentials acting between all particle pairs but in
versely quadratic potentials acting only between pairs 
belonging to the same family, with coupling constants 
that can be different for different families. In Sec. 4, 
we treat the second type of model, characterized by 
inversely quadratic potentials and only scattering 
states. Finally, in Sec. 5 we mention some queries 
that are naturally suggested by the quest for a more 
complete understanding of these types of models and 
we discuss the prospects of further generalizations. 
Some material has been relegated in five Appendices. 
Although we use some results of previous papers 
(especially of C) without reporting their proofs, the 
presentation should be sufficiently selfcontained to be 
understandable by readers not already familiar with 
the subject. 

is 

2. THE SYSTEM WITH QUADRATIC AND 
INVERSELY QUADRATIC POTENTIALS 

The Hamiltonian of the system under consideration 

N i-I 

+ I I {imw2(Xi - Xj)2 + g(Xi - Xj)-2}. (2.1) 
i=2 j=1 

Throughout this paper we assume that 

g> -1i2j(4m) (2.2) 

to prevent the collapse that a more attractive inversely 
quadratic potential would cause.4•9 (In the classical 
case the condition becomes of course g > 0.) Our 
task is to solve the eigenvalue equation 

(2.3) 

where 1ps is a translation invariant eigenfunction; in 
particular, we shall find all the eigenvalues E. together 
with their multiplicities, 

Hereafter we restrict attention to the sector of 
configuration space corresponding to a definite 
ordering of the particles, say 

Xi ~ X i +l ' i = 1,2, ... , N - 1. (2.4) 

In fact, the singular nature of the centrifugal inter
action, together with the restriction to one space 
dimension, forbids any particle from overtaking any 
other particle. This is reflected in the vanishing not 
only of the wavefunction, but also of its derivative 
with respect to any particle coordinate, whenever the 
coordinates of two particles coincide.lo As a conse
quence the extension of the wavefunction to the whole 
configuration space is achieved by the simple pre
scription 

1p(PX) = 'YII>1p(X), (2.5) 

where X indicates the set {Xi; i = 1, 2, ... , N} of 
Eq. (2.4), P indicates an arbitrary permutation, 'YIP 
equals unity if the particles obey Bose statistics and 
equals the parity of the permutation if the particles 
obey Fermi statistics. If the particles are distinguish
able (Boltzmann statistics), each wavefunction 1p may 
correspond to N! different states, each one of these 
being characterized by a wave function vanishing 
identically for all but one of the N! possible orderings 
of the particles, and for that one being given by Eq. 
(2.5). However, rather than considering these N! 
states as degenerate eigenstates of the same system, it 
is more appropriate to view them as N! altogether 
different systems, the difference being enforced by 
the dynamical superselection rule that prevents 
particles from crossing over each other. Therefore, 
hereafter, when counting the multiplicity of the 
eigenvalues, we shall assume that, irrespective of the 
original nature of the particles (identical or distin
guishable), one and only one state correspond to each 
different eigenfunction of Eq. (2.3). Hence, there shall 
be no need to distinguish between the different 
statistics, since such a distinction affects neither the 
spectrum nor its multiplicities, nor indeed the wave
functions in the sector (2.4), but only the prescription 
to continue them elsewhere. This situation is of course 
consistent with the remark that, since the singular 
centrifugal force prevents the particles from crossing 
over one another, their sequential order can in fact 
be used to identify them even if they were undistin
guishable to begin with. 

We now assert that the normalizable solutions of 
Eq. (2.3) can be cast into the form 

1p(x) = za+tcp(r)Pix), (2.6) 

where the variables z and r and the constant a are 
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defined as in C, namely 
K i-I 

Z = II II (Xi - X j), 
i=2 i=1 

1 N i-I-

/,2 = - I I(xi - xi, 
Ni=2j=1 

a = !(I + 4mgfj-2)i, 

(2.7) 

(2.8) 

(2.9) 

and Pix) is a homogeneous polynomial of degree k 
in the particle coordinates. ll These polynomials are 
also assumed to be translation invariant and to be 
solutions of the "generalized Laplace equation" 

[

X a2 ,Y i-I 

i~ ax~ + 2(a + t)i~j~/Xi - x j t
1 

x (.E... - ~)JPk(X) = 0. (2.10) aXi oXj 

We indicate hereafter with g(N, k) the number of 
independent polynomials, homogeneous of degree k 
and translation invariant, that are solutions of this 
generalized Laplace equation [a nonpositive value of 
g(N, k) indicates that no translation-invariant poly
nomial solution of Eq. (2.10) exists for the corre
sponding values of Nand k). The properties of these 
polynomials and the values of the quantities g(N, k) 
are discussed below and in Appendix C. 

To prove our assertion we insert the ansatz (2.6) 
into Eq. (2.3), and using Eq. (2.10) and the homo
geneity of Pk(x) we obtain (see Appendix A for a 
detailed derivation) 

-fj2j(2m){rp" + [N + 2k - 2 

+ N(N - 1)(a + t)],-lrp'} 

+ (lmw 2Nr2 - E}rp = 0, (2.ll) 

where the primes indicate differentiation. The normal
izable solutions of this equation are of course the 
functions 

rpnir) = exp [-Hmw/Ii)(tN)tr 2Wn[(mwjli)(tN)tr 2
), 

n = 0, 1, 2, .. '. (2.12) 

where L! is a Laguerre polynomia}12 and 

b = k + t(N - 3) + iN(N - 1)(a + i). (2.13) 

The corresponding energy eigenvalues are 

E2n+k = Iiw(iN)t 

x [HN - 1) + iN(N - 1)(a + i) + 2n + k), 

n=0,1,2,"', k=0,1,2,···. (2.14) 

This formula may be rewritten as follows: 

E. = Ef + l'!.FE, s = 0, 1,2,"', (2.15a) 

= EB + l'!.BE, s = 0, 1,2, .. " (2.15b) 

with 

Ef = nw(iN)!UCN2 - 1) + s), s = 0,1,2,"', 

(2.16a) 

s = 0, 1,2,···, 

and 
(2.16b) 

l'!.FE =~N(N - l)fjm(!N)!(a - t), (2. 1 7a) 

l'!.JfE = !N(N - l)fjw(iN)!(a + t). (2.17b) 

As shall be proved below, E;', respectively E~, Eqs. 
(2.16a) and (2.16b), are the energy levels of the 1-
dimensional N-body problem with only oscillator 
forces (g = 0) and with Fermi, respectively Bose, 
statistics. Moreover, the multiplicity of the energy 
levels Es ' E.t', and E~ (for the respective problems) is 
the same, and it is given by the formula (proved in 
Appendix C) 

feN, s) = ! g(N, s - 2n)O(s - 2n)()(n). (2.18) 
T/ 

Here, and always in the following, 

O(x) = 1, x;;::: 0, 

= 0, x < 0, 
(2.19) 

and all sums run over integral values of the dummy 
indices. A vanishing value of feN, s) (as it occurs, 
for instance, for s = 1; see below) indicates that the 
corresponding energy level is not present. A more 
detailed discussion offeN, s) is given in Appendix C; 
in particular, it is shown thatf(N, s) is the number of 
completely symmetrical polynomials that are homo
geneous of degree s and translation invariant, and 
that it also coincides with the number of different 
solutions of the equation 

(2.20) 

where n l are nonnegative integers. Explicit expressions 
for feN, s) for N up to 5 and arbitrary s are also 
reported in Appendix C, together with a proof of the 
asymptotic formula 

lim [feN, S)S2-X] = [N! (N - 2)!]-1. (2.21) 

While these equations provide explicit information 
on the multiplicity of the energy level E., it is often 
more useful to use for the energy spectrum the 
formula 

E{nd = Iiw(iN)! 

X [HN - 1) + iN(N - 1)(a + t) + l~ln} 
(2.22) 
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Here, each of the N - 1 integers n1 can take any non
negative value, and to each set {n/} there corresponds 
one and only one eigenstate. Thus, this form of the 
formula for the spectrum automatically takes care of 
the multiplicity problem; this is implied by a compar
ison with the previous formula, Eq. (2.15), and by the 
statement reported above [see Eq. (2.20)]. 

The polynomials Pk(x) are, by definition, transla
tion invariant and homogeneous of degree k, and 
they satisfy the generalized Laplace equation (2.10).13 
The last requirement implies thal they are completely 
symmetrical under the exchange of any two coordinates 
Xi' Xj; a formal proof of this most important property 
is given in Appendix B. Thus, they can be written in 
the form 

Pix) = S I a{ni) [IT X;i] [IT O(ni - ni _ 1)] bk.~, 
{nil i=1 i=1 

(2.23) 

this being the most general form that a completely 
symmetrical polynomial can take. Here, by definition, 

N 

1: = ! ni, 
i=1 

(2.24) 

S is the operator that symmetrizes over all exchanges 
of the coordinates, {nil indicates a set of the N (non
negative) integers ni' and !{ni) indicates the sum over 
all such sets. The sum extends, in fact, only over the 
sets satisfying the conditions 

ni ~ ni-l ~ no == 0, i = 1,2, ... ,N, (2.25) 

N 

k = ! ni, (2.26) 
i=1 

these restrictions being explicitly enforced by the () 
functions and by the Kronecker-b function; by con
vention, no == O. The constants a{n,} must, of course, 
be chosen so that the polynomial of Eq. (2.23) be 
translation invariant and satisfy the generalized 
Laplace equation (2.10); for small values of Nand k 
one can easily find in this manner all the polynomials 
Pix). A different way to write the most general 
completely symmetrical polynomial of N variables 
that is homogeneous of degree k is reported in 
Appendix C. 

There remains to prove that the spectra of Eqs. 
(2.16a) and respectively (2.16b) [or, equivalently, Eq. 
(2.22) with a = t, respectively a = -il correspond 
to the cases with only oscillator forces (g = 0) and 
Fermi, respectively Bose, statistics. This follows"from 
the remark that, for g = 0, the ansatz of Eq. (2.6) 
may be used, with a = 1 (Fermi statistics) or a = -1 

(Bose statistics), throughout all configuration space
i.e., not only in the sector specified by Eq. (2.4).14 
In the Fermi case, one obtains thereby again the 
generalized Laplace equation (2.10) (with a = i), 
and the fact that only symmetrical polynomials are 
solutions of this equation is consistent with the 
requirement that the wavefunction tp of Eq. (2.6) be 
completely antisymmetrical [note that z is completely 
antisymmetrical, while of course r, and therefore also 
any function !per), is completely symmetrical]. In the 
Bose case, the ansatz of Eq. (2.6) with a = -i implies 
that the (homogeneous and translation-invariant) 
polynomials Pk(x) satisfy the usual Laplace equation, 
namely Eq. (2.10) with a = -i; though nonsym
metrical polynomial solutions of this equation do now 
exist, they are excluded by the symmetry requirement 
itself, and this guarantees that also the multiplicity 
for the Bose case coincides with that of the general 
case (the number of completely symmetrical polynom
ial solutions, homogeneous of degree k and translation 
invariant, of the Laplace equation, coincides with the 
number of polynomial solutions, homogeneous of 
degree k and translation invariant, of the generalized 
Laplace equation, since the latter are automatically 
constrained to be completely symmetrical; see Appen
dices B and C). 

The result we have just proved implies that the 
(Gibbs) partition function for the I-dimensional 
system composed of N identical oscillators coupled 
by pair harmonical potentials is the same (except for 
a multiplicative constant) for Bose and Fermi statis
tics [it is also the same (except for a multiplicative 
constant) for the system discussed in this paper, 
having additional pair inverse-square potentials of 
arbitrary strength (but the same for all pairs)15]. 
This fact does not appear to have been previously 
noted, possibly because the possibility to handle the 
many-oscillator problem in higher-dimensional spaces 
focused attention on the more realistic 3-dimensional 
case.1S 

3. GENERALIZED MODEL WITH QUADRATIC 
AND INVERSELY QUADRATIC POTENTIALS 

In this section we discuss briefly the generalized 
problem characterized by the Hamiltonian 

/i2 A Nil. 02 

H=--I!-
2m 11.=1 i=1 OX!i 

A NI1. A '!! 
+ lmw2I I I l. (X .. i - XPi)2 

.. =1 i=1 P=l i=l 

A Nil. i-I 

+ !gl1.! !(x .. i - X .. ;)-2. (3.1) 
",=1 i=21=1 
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This Hamiltonian describes N particles, with where Lt is a Laguerre polynomial,12 

(3.2) 

divided in A families of N" particles, 0( = 1,2, ... , A. 
All the N particles interact pairwise through the 
harmonical potential }mw2(x,,; - xpy, and in 
addition within each family (but not between different 
families) the particles interact pairwise through the 
potential gix"i - X,,)-2. To avoid 2-body collapse,u 
we assume as usual that 

gel > -1i2j(4m), 0( = 1,2,···, A. (3.3) 

The case of the preceding section corresponds to 
the present one with A = I. The proofs of the results 
reported in this section parallel closely those of the 
corresponding results of Sec. 2, and are therefore 
omitted. We assume, whenever relevant, that within 
each family the particles are identical, satisfying 
Bose or Fermi statistics. 

As in the preceding case, we need solve the eigen
value problem only in the sector of configuration 
space characterized by the prescriptions 

X«i ~ x". i+l , 

0( = I, 2, ... , A'; i = I, 2, ... , N" - 1, 

where A' is characterized by the condition 

g,,:F 0, 0( = 1,2,··· ,A', 
gel = 0, 0( = A' + I, A' + 2, ... , A; 

(3.4) 

A' may be zero or it may coincide with A. Once the 
prOblem is solved within the sector (3.4), the extension 
of the many-body wavefunctions to the whole con
figuration space is easily achieved by the obvious 
generalization of the prescriptions discussed in detail 
at the beginning of the preceding section. 

It is convenient to introduce the quantities 

iVa i-l 

Z" = IT IT (X"i - X,,), 
i=2 1=1 

1 A N« A Np 
r2 = - 2 2 2 2 (X«i - X(Jj)2, 

2N «=1i=1 P=1 ;=1 

al1. = t(1 + 4mg"n-2)!. 

(3.5) 

(3.6) 

(3.7) 

A 

b = k + HN - 3) + 2 !NiN" - 1)(a« + i), 
,,=1 

(3. to) 

and Pk(x) is a translation-invariant polynomial in the 
N variables X"i' homogeneous of degree k and satis
fying the generalized Laplace equation 

(3.11 ) 

It can be shown that the polynomials Pk(x) are 
completely symmetrical (invariant) for any coordinate 
exchange within the same family [provided the corre
sponding gel does not vanish, or, if it vanishes, 
provided the particles satisfy Fermi statistics, so that 
a" = t; if, instead, gIl vanishes and the particles of the 
IXth family satisfy Bose statistics, so that all = -!, 
only solutions that are completely symmetrical in the 
variables X"i , i = I, 2, ... , N« , should be considered, 
even though nonsymmetrical solutions of the general
ized Laplace equation (3.11) exist]. 

The energy eigenvalues are given by the formula 

Enk = E 2n+k 

= n(JJ(iN)l[!(N - I) 

+ Jl!Nr..(Ntl - 1)(a" + !) + 2n + k J (3.12) 

All these equations are straightforward generaliza
tions of the corresponding equations of the preceding 
section. The analysis of the degeneracy of these 
energy levels could also be carried out in analogy to 
the treatment given there and in Appendix C. 

4. THE SYSTEM WITH INVERSELY 
QUADRATIC POTENTIALS 

If gIl = 0, a" = i for Fermi statistics, a" = -i for 
Bose statistics. The Hamiltonian of the system under consideration 

It can then be shown that the eigenfunctions of is 
the eigenvalue equation 

(3.8) 
have the form 

"Pnk = {f{ {Z~tl+!J} exp ( - ~ m/i(JJ (!N)!r2
) 

x I!',,[~(JJ (tN)!r2
] • Pk(x), (3.9) 

again with the condition (2.2) to prevent 2-body 
collapse.4.9 This Hamiltonian has of course no dis
crete spectrum; it describes only scattering states. The 
treatment of Sec. 2 and Appendix A implies that the 
complete set of stationary eigenfunctions of this 
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problem is (in the center-of-mass frame) 

'Ppk = za+ir-bJb(pr)Pix), k = 0, t, 2, .. " p ~ 0, 

(4.2) 

with z, r, a, b, and Pk(x) defined as in Sec. 2 [Eqs. 
(2.7)-(2.10) and (2.13)], and with p connected to the 
energy eigenvalue by 

E = Ji2p2/(2m). (4.3) 

The product of rb times the Bessel function Jb(pr) is 
the (regular) solution of the differential equation 

The wavy symbol'" in these equations and below 
indicates asymptotic equality, i.e., equality up to 
corrections of order r-2. 

The stationary eigenfunction describing, in the 
center-of-mass frame, the scattering situation is 
characterized by the form 

"Pill r-.; C exp [i .I PiX;], 
.=1 

(4.10) 

with 

Pi S PHI' i = t, 2, ... , N - I, (4. t 1) 

N 
p2 = L p;, (4.12) - !!..[~ + (l + 2b)!.!!. + p2]IP(r). = 0, (4.4) 

2m dr2 r dr and 
.=1 

which coincides with Eq. (2.11) when OJ = 0 and the 
energy E is given by Eq. (4.3). Of course, for each 
value of k there are g(N, k) independent eigenfunc
tions, corresponding to the g(N, k) independent 
solutions Pk(x) of Eq. (2.10). We shall indicate them 
hereafter as Pkix) , using the quantum number q, 
which takes all integral values from I to g(N, k), to 
label them. It is important to recall that, as proved in 
Appendix B, all these polynomials Pkix) are com
pletely symmetrical (invariant) under the exchange 
of any two coordinates Xi' Xj . 

To simplify the discussion we assume hereafter that 
the particles are distinguishable. Attention need be 
confined only to the sector of phase space corre
sponding to a definite ordering of the particles, say 
that specified by the inequalities (2.4), whose validity 
is assumed hereafter. 

The most general stationary eigenfunction of the 
Hamiltonian (4.1), corresponding to the eigenvalue 
(4.3), can be written in the form 

i <Xl g(N.k) 

'P = za+ L L ckqr-A-kJ A+ipr)Pkq(x), (4.5) 
k=O q=l 

where to expose the dependence on the quantum 
number k we have introduced the convenient constant 

A = b - k = teN - 3) + tN(N - l)(a + t). (4.6) 

To discuss scattering, we need only the asymptotic 
behavior of this function when all particles are far 
apart from each other. Then 

(4.7) 
where 

'Pin""'" (i1Tpr)-iza+ir-A 
",g(N.k) 1 XL L ckqr-ke,IA+kHlh-tprPk,lX), (4.8) 

and 
k=O 0=1 

'Pout ~ (t1Tpr)-iza+i,.-A 
<Xl g(N.kJ 1 XL L ckOr-ke-iCA+k+1flh+tprp",/x). (4.9) 

k=O a=1 

N 

L Pi = O. (4.13) 
;=1 

We now prove that if the constants cka are chosen 
so that Eq. (4.8) yields (4.10), then from Eq. (4.9) there 
also follows 

(4.14) 

In fact, the symmetry and the homogeneity of PkO(x) 
imply that 

Pkq( -Sx) = e-iktrPkq{x), (4.15) 

where S indicates an arbitrary permutation of the 
coordinates Xi' We focus attention hereafter on the 
special permutation T, defined by 

TXi = XN+l-i, i = 1,2, ... ,N. (4.16) 

The distinguishing property of this permutation is 
that the set {-Tx} belongs to the same sector (2.4) 
of configuration space as the set {x}, because the 
inequalities 

Xi ~ Xi+1' i = 1, 2, ... , N - I, (2.4) 

also imply 

-XN+1-i ~ -XN-i, i = 1,2, ... ,N - 1. (4.17) 

Now using Eq. (4.15) we can rewrite "Pout, Eq. (4.9), 
in the form 

"Pout""" e-i1TA(t1Tpr)-iza+ir-A 
00 g(N.kl 

X 2 2 Ckar-keiIA+k+tltll'-iprPkO( - Tx), 
k=O (1=1 

(4.18) 

where we have set formally 

ft = -po (4.19) 

Let us re-emphasize that this representation of "Pout 

applies in the sector (2.4) of configuration space. It 
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may therefore be compared with the representation of 
'I/'hl' Eq. (4.8); the comparison yields, through Eq. 
(4.10), the result 

(4.20) 

where Pi is related to P in the same manner as Pi is 
related to p. Since by dimensional arguments we can 
assert that 

(4.21) 

where the "angular" variables ct.. are independent of 
p, Eq. (4.19) implies simply 

P. = -p,. (4.22) 

Substituting this equality and Eq. (4.16) in Eq. 
(4.20) and changing the dummy index iinto N + 1 - i 
yield Eq. (4.14). QED 

Let us now discuss the implications of the result 
we have just proved. The initial wavefunction (4.10) 
describes, in the sector (2.4) of configuration space, 
a (free) state where particle 1 has momentum PI' 
particle 2 has momentum P2, etc., the inequality 
(4.11) insuring that this is indeed an incoming scat~ 
tering state, i.e., one where each particle gets less 
close to every other particle if time runs· backward. 
The final wavefunction (4.14) describes, in the same 
sector (2.4) of configuration space, a (free) state 
where particle 1 has momentum PN' particle 2 has 
momentum PN-u etc., the inequality (4.11) insuring 
that this is indeed an outgoing scattering state, i.e., 
one where each particle gets farther away from every 
other particle as time goes on. The result just proven 
implies that the stationary eigenfunction of the 
Hamiltonian H, Eq. (4.1), which is identified by the 
condition that its incoming part coincide with Eq. 
(4.10), contains only the outgoing wave Eq. (4.14); 
thus the initial state characterized by particle 1 
having momentum Pl' particle 2 having momentum 
P2' etc., can go only into the final state ch~racterized. by 
particle 1 having momentum PN' particle 2 havmg 
momentum P N-l' etc. This corresponds to the rule 

P~ = PN+1-i' i = 1,2,' .. , N, (4.23) 

where Pi is the initial momentum of the ith particle 
and P; is the (only allowed value of the) final momen
tum of the same particle; we already noted above 
that the inequalities (4.11), satisfied by the initial 
momenta Pi' imply automatically that the final mo
menta P; given by Eq. (4.23) satisfy the inequalities 

P~ ~ P;+l, i = 1,2, ... , N - 1, (4.24) 

which characterize outgoing states. It should perhaps 
be emphasized that the rule (4.23) is not implied, 
for N > 2, by energy and momentum conservation 
[Eqs. (4.12) and (4.13), and the corresponding 
equations with p; in place of Pi]' although it is of 
course consistent with these requirements. 

The result (4.23) is certainly true, but nontrivial, 
also in the classical case; note that it is independent of 
the value of the coupling constant g, that only enters, 
through Eq. (4.6), in the phase factor exp (-hrA) 
multiplying Eq. (4.14). 

The result (4.23) was already known for the case of 
infinitely repulsive zero-range b-function interactions, 
in which case it is actually quite trivial in the classical 
case, although a bit less so in the quantal case2

; that 
problem corresponds indeed to the limit of the present 
one as g ---+ 0, a ---+ t, since for extremely small g the 
interaction g(x; - Xi )-2 is effective only at very short 
interparticle separation Xi ~ X j' where its singular 
nature continues to prevent the particles from crossing 
over-namely, it has the same effect as an infinitely 
repulsive b-function potential. 

Finally we discuss whether the result (4.23) holds 
only for the case of equal particles, or if it remains 
true even if the coupling constants gij multiplying the 
inversely quadratic potentials acting between the ith 
and jth particles are not all equal. The comparison 
with the infinitely repulsive zero-range !5-function 
case, as discussed above, suggests that this is, at least 
approximately, the case if all the constants gij are 
extremely small, independently from their being 
equal or different. But the measure of the smallness of 
the (nondimensionless) coupling constants gii is 
nontrivial. In the quantal case the dimensionless 
constants 2mgiiJi-2 could be considered; but they 
become infinite in the classical limit, whereas the 
phenomenon just discussed should continue to be 
relevant in this limit. On the other hand, in the clas
sical case an examination ofthe example discussed in 
Ref. 8 and in Appendix D suggests that the distin
guishing parameter between the "small g" and the 
"not-small g" cases is the dimensionless quantity 

where t is the time and r(t) is connected to the co
ordinates Xi(t) through Eq. (2.8). But this quantity 
does not depend only on the parameters m and gij 
of the system; it depends also on the initial data Pi 
and a j , defined by 

x.(t) ~ pitfm + ai + O(t-l). (4.26) 
t-+-a:> 
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Therefore, no analogous quantity exists in the 
quantal case, since, in this case, we cannot specify 
both Pi and ai . One might therefore be inclined to 
conjecture that the result (4.23) hold in all cases, for 
it should hold for small coupling constants gij 
independently from their being equal, and at the same 
time it should be independent of their scale. It is 
instead much more reasonable to conjecture that the 
result (4.23) does not hold, unless all the coupling 
constants (and the masses) are equal. In the quantal 
case, the asymptotic outgoing wavefunction 'Pout, 

corresponding to the asymptotic wavefunction 'I'in of 
Eq. (4.10), has, in general, the form 

'Pout -- c f dp~ ... dP:Vt5(~1[P;2 - P~l)bC~[P; - Pil) 

[
-"-I ] ['\" ] x !J O(p; - P:+l) exp i i~ P;X; S(Pi' p;), 

(4.27) 

where the () functions insure energy and momentum 
conservation, while the (j functions insure that the 
momenta satisfy the inequalities (4.24) characterizing 
a final scattering state. The S-matrix function, in the 
general case, need not contain any additional () func
tion and, in particular, need not reduce to a product 
of () functions; only if all the coupling constants gij 
are equal (and all the masses are also equal), i.e., only 
in the case treated above, the function S(Pi' p;> (can 
be computed and) reduces to a product of () functions17 

S(Pi' P;> = e-iUA[ft b(p; - p.Y+1-i)]1 

[()C~[p;2 - P;])bC~[P; - Pil) 1 (4.28) 

so that Eq. (4.27) reproduces Eq. (4.14). In addition, 
one conjectures that a measure of the deviation of the 
S matrix S(Pi' p;) for the general case from that of 
Eq. (4.28) be given by the quantity 

I
N 1-1 

€ = .~~X.l(gi) - gi'i,)1 I Ilg1kl, 
t,J.1.1 1=2k=1 

(4.29) 

which is clearly independent of the scale of the 
coupling constants gij' Of course, the value of this 
quantity is relevant to measuring the violation of the 
rule (4.23) also in the classical case, in addition to the 
quantity fJ of Eq. (4.25). 

The above conjecture concerning the invalidity of 
the rule (4.23) in the general case (with different 
coupling constants gi;) is strongly supported by the 
study of the 3-body classical case. Indeed in Appendix 
D it is proved that the rule (4.23) does not hold, at 
least in some cases, if the coupling constants gi; are 

different; and the treatment suggests that if the 
coupling constants are different, the rule (4.23) 
almost never holds-namely, it is always violated 
except possibly for some symmetrical set of coupling 
constants and of initial data, the set of such initial 
data having, however, presumably a null measure 
relative to the whole set of possible initial conditions. 
These statements refer of course to the classical case; 
obviously they imply that, also in the quantal case, 
the S matrix does not reduce to the simple form 
(4.28), unless al\ the coupling constants, and the 
masses, be equal. 

5. OPEN PROBLEMS 

A number of questions are suggested by the 
results obtained. There is the problem of finding an 
explicit representation for the eigenfunctions, as it 
was done in the 3-body case.4 This problem coincides 
with that of finding an explicit representation of the 
(translation-invariant) homogeneous polynomial solu
tions Pk(x) of the generalized Laplace equations 
(2.10) and (3.11).ls 

Then there is the problem of solving the classical 
case, displaying explicitly the time evolution of the 
particle coordinates, for both types of models. For 
the first type (Sees. 2 and 3), it should be verified 
whether the plausible conjecture of periodic motion 
(already mentioned in the Introduction, and strongly 
suggested by the degenerate nature of the quantal 
spectrum) is confirmed.7 For the second type (Sec. 4), 
the simple rule (4.23) connecting the initial momenta 
Pi to the final momenta P; should of course be 
recovered. 

In view of the simplicity of the results characteristic 
of both types of models, it should be possible to 
reobtain the same conclusions, possibly more simply, 
by displaying the group-theoretical structure that 
certainly underlies them. ls Note that this group
theoretical structure must be a peculiarity of the 
equal-particle models (see below). 

As regards generalizations, the first problem that 
comes to mind is the extension to models charac
terized by different coupling constants gij of the 
inversely quadratic potential. Is such a generalization 
of the models of Sees. 2 and 3 still characterized by a 
completely19 linear spectrum (in the quantal case, 
and by periodic motion, in the classical case)? It is 
plausible to conjecture that this is generally not the 
case (even though the linear formula 

Es = nW(iN)![s + leN - 1) + i~~:(aij + !)} 
(5.l) 



                                                                                                                                    

428 F. CALOGERO 

with 

au = t(1 + 4mgiili-
2)l, (5.2) 

is an appealing generalization of Eq. (3.12), also in 
view of the simple physical interpretation it suggests, 
according to which the potential gii(Xi - Xj)-2 

produces simply an energy shift of the amount 
liw(tN)l(aij ± t) relative to the case with gij = ° 
and with the particles i and j being identical bosons 
(+ sign) or fermions (- sign)]. This conjecture is 
validated in Appendix E by a perturbative computa
tion in the 3-body case. 20 For the second type of model 
(Sec. 4), we have already all but proved (in Sec. 4 
and Appendix D) that the rule (4.23) breaks down 
unless all the coupling constants gij coincide. 

A much more interesting generalization is of course 
in the direction of two or more space dimensions. 
It is expected that neither the completely linear nature 
of the spectrum for the first type of models nor the 
simple rule (4.23) for the second type of model is 
maintained, if the restriction to I-space is dropped. 

Another category of models that is somewhat 
similar to those considered in Secs. 2 and 3 of 
this paper and whose solution, even only in 1-
dimensional space, would be most interesting, is 
defined by Hamiltonians such as 

li2 N a2 n i-I 

H = - -1-
2 
+ tmw2 11(xi - Xj)2 

2m i=1 aX i i=2 j=1 

N i-I 

+ g 1 I (Xi - Xj )-2, (5.3) 
i=2j=1 

with n < N. Already for N = 3 and n = 2 this 
Hamiltonian describes both a system with a discrete 
spectrum and one with scattering (between particle 3 
and the bound state of particles I and 2, with the 
possibility of anelastic collisions occurring, although 
of course without break up). These two systems are 
characterized by (the same Hamiltonian but) different 
particle orderings, in the former case with particle 3 
trapped between particles I and 2, in the latter case 
with particle 3 to the left (or to the right) of both 
particles I and 2. 

Finally, we mention the possibility to interpret the 
results of this paper, and of the preceding ones,4.8 in 
the context of the classical theory of wave propagation, 
say physical optics. In fact, these results imply the 
existence of a potential for which the fundamental 
equation of wave propagation 

[.:l + p2 - V]"P = ° (5.4) 

can be solved exactly. Here, of course, A is the 
Laplace operator (in N dimensions; clearly the case 

N = 3 is the most interesting), and the potential is 

.v i-I 
V = G 11(xi - Xi )-2, G> -t, (5.5) 

.=2i=1 

where now Xi are the (Cartesian) coordinates of a point 
in space.21 This potential is of course not spherically 
symmetrical, and it is singular on the planes Xi = Xi; 

but it is otherwise acceptable within each of the 
wedges (sectors) in which the planes Xi = Xj slice the 
whole space (in particular, it vanishes asymptotically). 
We leave to the interested reader the task of formu
lating in the language of physical optics the conclusions 
of Sec. 4 of this paper (or of Ref. 8). Such a translation 
is just the converse exercise to that performed by 
those (for instance, McGuire,2 and before him 
Nussenzweig2) who invented solvable I-dimensional 
problems by reinterpreting results that had been 
previously obtained in the framework of the theory of 
electromagnetic wave propagation. 
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APPENDIX A 

In this appendix we report in detail the steps 
required to derive Eq. (2.11). 

We begin by noting that 

N (}2 1 a2 N-l 02 

!-2 = --2 + !-2' (Al) 
;=1 ihi N ayo i=1 aYi 

where the translation-invariant "Jacobi coordinates" 
are defined by22 

while 

Yi = [i(i + l)]-l( iXi+1 - Ix,), 
1=1 

i = 1,2, ...• N - 1, (A2) 

1 N 
Yo = - LXi 

Ni=1 
(A3) 
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is the center-of· mass coordinate. We also note that a Eq. (2.7), which implies 
transition from the "Cartesian" coordinates Yi' 
i = 1, 2, ... , N - 1, to the "spherical" coordinates 
r,O.,i= 1,2,···,N-2,with23 

N-I 

/'~ = L Y;, (A4) 
;=1 

yields 
N (J2 02 0 0 I - = - + r 2- N - r Y- 2

- + ,.-2L (AS) 
;=1 ox; oy~ or or ' 

where the operator L acts only on the N - 2 "angular" 
coordinates 0i . 

It is important to note that the radial coordinate r 

defined by Eq. (A4) coincides with that introduced 
previously through Eq. (2.8), as may be verified by an 
explicit computation. 

Similarly, we note that 

f l(xi - Xj)-I(~ - ~) 
i=2 j=1 ox. ox j 

I 0 2 ~ = tN(N - I) - - + 1'- M, (A6) 
I' or 

where the operator M acts only on the angular 
coordinates. This equation follows from the relation 

which is implied by the definition (2.8) of r. 
Next we note that if Pk(x) is a translation-invariant 

homogeneous polynomial of degree k in the N Xi 

coordinates, it is also a homogeneous polynomial of 
degree k in the N - 1 Yi coordinates, and, therefore, 
r-kpk(x) depends on the N - 2 angular coordinates 
OJ but is independent of r. Using this remark, and 
Eqs. (A5) and (A6), we may cast Eq. (2.10) in the 
form 

(L + 2(a + t)M)r-kpk(x) 

= -k[k + N - 3 + N(N - l)(a + t)]r-kPix). 

(AS) 

Finally, we note the two important relations 

The first one follows directly from the definition of z, 

(AI2) 

The second equation obtains evaluating the second 
derivative of za+l, 

and then using the definition of a, Eq. (2.9), and the 
two equations 

(AI4) 

(AI5) 

which are proved in C. 
All the necessary tools having been prepared, we 

turn now to the derivation of Eq. (2.11). Substituting 
Eq. (2.6) into Eq. (2.3) and using Eqs. (A9) and (AlO), 
we get 

1i2 [1"; (J2 
{-- L-

2m i=1 ax~ 

+ 2(a + t) f l(x j - Xj}-I(~ - .i.)] 
i=2j=1 ox; OXj 

+ tmw2Nr2 - E}r-kPk(x)rkcp(r) = 0, (AI6) 

where we have explicitly displayed the function 
,-kPk(X), which depends on the N - 2 angular vari
ables OJ, and the function r"ep(r), which depends only 
upon the radial coordinate r. Then we use Eqs. (A5), 
(A6), and (A8), and we get 

[- Jf(r2- N .E.. rN -
2 .!!. + N(N - I)(a + t)!.E.. 

2m dr dr I'dI' 

- k[k + N - 3 + N(N - l)(a + t)]r-2
) 

+ tmw2Nr2 - E }k<p(r) = O. (AI7) 

This equation immediately yields Eq. (2.11). QED 
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APPENDIX B 

In this appendix we prove that any polynomial 
solution of the generalized Laplace equation 

[

N 02 
LoP(x) == !

i=l ox~ 

+G!!(xi-X;)-l --- P(x)=O N i-I ( 0 0 )] 
;=21=1 OX; oX I 

(Bl) 

is completely symmetrical under the exchange of any 
two coordinates Xi' x j • The only assumption needed 
for the proof is that 

G =F -2p, P = 0, 1,2, .... (B2) 

This condition is of course fulfilled in the case of 
Eq. (2.10), since G = 2(a + l) is in fact positive. 

Let us assume, per absurdum, that P(x) is not 
symmetrical under the exchange of two coordinates, 
say Xl and xa. Then P(x) and P12P(x), where P12 is the 
operator that interchanges Xl and X2' are different, 
and the polynomial 

Q(X) = (I - P12)P(x) (B3) 

does not vanish identically. This polynomial is also a 
solution of Eq. (BI), since Pu, commutes with the 
(completely symmetrical) operator La of Eq. (BI); 
moreover, it is antisymmetrical under the exchange 
of the coordinates Xl and Xa, and therefore it can be 
written in the form 

where p is an integer not less than zero and R(x) is a 
polynomial, symmetrical under the exchange of Xl 
and X2 and not identically vanishing for Xl = X2: 

(BS) 

But now from Eq. (B4) there follows that, in the neigh
borhood of Xl = X2' 

(Xl - x2r 1 (':l0 -~) Q(x) 
\lXI oX2 

= 2(2p + l)(xl - x2if)-lR(x) + O[(x} - X 2)iPj. 

(B6) 
From Eq. (B4) we also get 

(
02 (2) 
ox~ + OX~ Q(x) 

= 4P(2p + l)(Xl - X2)2f)- lR(x) + O[(Xl - X2)2»]. 

(B7) 

Inserting Q(x) in Eq. (BI) and noting that all other 
terms besides those just computed produce contri
butions of order (Xl - X2)2 p , we finally obtain 

2(2p + 1)[2p + G]R(x)(x} - X2)2P-I 

+ O[(XI - X2)2P] = O. (B8) 

Dividing this equation by (Xl - X 2)2P-l and then 
setting Xl = Xi yields 

2(2p + I)[2p + G]R(x)I"'1="'2 = O. (B9) 

This equation, together with Eq. (B2), is in contradic
tion with Eq. (BS); the proof per absurdum is therefore 
accomplished. 

APPENDIX C 

In this appendix we discuss some results concerning 
the multiplicity of the energy levels. 

We begin with a proof of Eq. (2.18). Let us assume 
that two eigenfunctions of the form24 

'lfnk = za+t exp [ - ~ "'nw (1N)ir2] 

x L"..[~w (IN)ir2]Pk(X), (CI) 

say tpn1k1 and 'lfnlk" are mutually orthogonal (and 
therefore linearly independent) unless nl = n2 and 
kl = k2 ; also, let us recall that by definition g(N, k) 
is the number of linearly independent eigenfunctions 
corresponding to an assigned value of the quantum 
number k. Then the number feN, k) of linearly 
independent eigenfunctions corresponding to the 
quantum number s = 2n + k is the sum of the num
bers g(N, k) over all allowed (Le., nonnegative 
integral) values of nand k that are consistent with the 
relation s = 2n + k: 

feN, s) = ! g(N, k)l5s•2n+k(J(n)(J(k). (C2) 
n.k 

Performing the sum over k by means of the Kronecker 
delta yields Eq. (2.18). QED 

There remains to prove the orthogonality of 
'If"'lkl and 'lPn,k.' This (rather obvious) property is most 
conveniently proved by rewriting tpnl< in the form 

(Cl') 
where 

R"k(r) == rb-i(N-S) exp [- ~ m/iw ON)ir2
] 

x L![~W (IN)ir2
} (C3a) 

XII:(O,) == [z/r IN(N-l)Ja+lr-kPk(x), (C3b) 
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and by noticing that the Hamiltonian operator H 
of Eq. (2.1) may be rewritten in the separated form 

H = H0.11 + Hr + r- 2Ho" (C4) 
with 

Here we are using the notation, and some of the 
results, introduced at the beginning of Appendix A. 

Using the separated form of the eigenfunction, Eq. 
(CI'), and of the Hamiltonian, Eq. (C4), we can 
recast the eigenvalue equation 

H"Pnk = Enk"Pnk 

into the separated form 

HoXio.i) = AkXk(o.,), 

(Hr + r-2Ak)Rnk(r) = EnkRnk(r), 

and from Eqs. (C3a) and (C6) we get 

Ak = [1i 2/(2m)]W - !(N - 3)2] 

= [Ji2/(2m)][k + iN(N - 1)(a + 1)] 

(CS) 

(C9) 

(CIO) 

(Clla) 

X [k + N - 3 + iN(N - l)(a + i)]. (CUb) 

Since the operators Ho, and Hr are Hermitian, Eqs. 
(C9) and (Cll) imply the orthogonality of Xk1(o.i) and 
Xk/o.i) unless kl=k2' and Eqs. (CIO) and (2.14) 
imply the orthogonality of Rnlk and R n•k unless 
n1 = n2 • The combination of these two results implies 
the orthogonality of "Pn1k1 and "Pn.ka unless n1 = n2 and 
k1 = k2 • QED 

[It can be explicitly verified, using the formula 

II dXi15CfXi ) oc do.rN
-

2 dr, (CI2) 

where dO. indicates the differential element for the 
"angular" coordinates o.i' that the orthogonality of 
Rnlk to Rnak reproduce the well-known orthogonality 
relation for Laguerre polynomials.] 

We turn now to a discussion of the multiplicity 
indices g(N, k) and feN, k), beginning with some 
definitions. Let a(N, k) be the number of linearly 
independent (completely symmetrical) polynomials of 
N variables Xi that are homogeneous of degree k. Let 
beN, k) be the number of linearly independent 
completely symmetrical polynomials of N variables 
Xi that are homogeneous of degree k and translation 

invariant [we show presently that beN, k) coincides 
with feN, k)]. Let c(N, k) be the number of linearly 
independent (completely symmetrical) polynomials of 
N variables Xi that are homogeneous of degree k and 
that are solutions of a given generalized Laplace 
equation such as Eq. (2.10). Finally, as in Sec. 2, let 
g(N, k) be the number of linearly independent 
(completely symmetrical) polynomials that are homo
geneous of degree k, that are translation invariant, and 
that are solutions of a given generalized Laplace 
equation such as Eq. (2.10). Then of course 

beN, k) = a(N, k) - a(N, k - I), (CI3) 

because the requirement that Pk(x) be translation 
invariant is equivalent to the condition that the poly
nomial L~l oPk(X)/OXi vanish identically, and it 
corresponds therefore to a(N, k - 1) equations, 
namely as many equations as the number of different 
monomials that make up the general completely 
symmetrical polynomial homogeneous of degree 
k - 1. An analogous argument yields 

c(N, k) = a(N, k) - a(N, k - 2), (CI4) 

since the application of the (generalized) Laplace 
operator to a completely symmetrical homogeneous 
polynomial of degree k yields a completely symmetri
cal homogeneous polynomial of degree k - 2. 
Analogous arguments also yield 

g(N, k) = beN, k) - beN, k - 2), 

g(N, k) = c(N, k) - c(N, k - 1), 

(CI5a) 

(CI5b) 

and then either one of these equations yields 

g(N, k) = a(N, k) - a(N, k - 1) 

- a(N, k - 2) + a(N, k - 3). (CI6) 

On the other hand, Eqs. (CI5a) and (2.18) immedi
ately yield 

feN, k) = beN, k). (CI?) 

An explicit formula for the computation of a(N, k) 
is 

N 

a(N, k) = L15k.l:II O(ni - ni- 1). (CIS) 
In;} i=1 

Here all symbols are defined as in Eq. (2.23); indeed 
the validity of this equation is a consequence of the 
possibility of writing in the form (2.23) the most 
general polynomial that is homogeneous of degree k 
and completely symmetrical, for Eq. (CIS) is obtained 
by counting the number of coefficients a{ni} that enter 
in Eq. (2.23). A general closed expression for this sum 
is not known; the computation of a(N, k) from this 
formula is a tedious task already for N = 3. Explicit 
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expressions for a(N, k) for N up to 5 and arbitrary k 
have been obtained by a different procedure.25 It is 
based on the possibility of writing the most general 
completely symmetrical polynomial in the alternative 
form 

s 
L a{n,}bk.L;\~,/n, II [S7 IO(I1 I)]. (C19) 

/=1 

where 
S 

S/ = LX:' (C20) 
;=1 

and the sum extends over all sets of N nonnegative 
integers 111 that are consistent with the homogeneity 
condition enforced by the Kronecker b; note that 
it can be similarly asserted that the most general 
completely symmetrical and translation invariant 
pOlynomial of N variables, that is homogeneous of 
degree k, can be written in the form 

where 

'" Tl = L (x; - N-1S1)1 (C22) 
;=1 

(so that obviously Tl = 0 and TI is translation 
invariant). The numbel a(N, k) oflinearly independent 
completely symmetrical polynomials of N variables, 
homogeneous of degree k, coincides with the number 
of coefficients a{n,} entering in Eq. (CI9); thus, it is 
the number of different sets {n l ; / = I, 2, ... , N} of 
N nonnegative integers that are consistent with the 
equation 

N 

k = L Inl' (C23) 
1=1 

Similarly Eq. (C22) implies that the number beN, k) 
of linearly independent completely symmetrical 
polynomials of N variables, homogeneous of degree k 
and translation invariant, coincides with the number 
of different sets {nl; I = 2,3, ... , N} of N - 1 non
negative integers that are consistent with the equation 

N 

k =! 1n l • (C24) 
1=2 

But we proved above that this number coincides with 
the multiplicity index feN, k). Thus the statement 
reported in Sec. 2, and used there to obtain Eq. (2.22), 
is now proved. 

The following trick25 is convenient to evaluate 
a(N, k). Introduce the generating function 

00 

The statement just proved implies the formula 

00 B 
A,V(z) = ! ZLI-IIR,. (C26) 

From this we get 
Ttl.n2:.···.n,A·=O 

x 
Ax(z) = II (1 - zlr1. (C27) 

1=1 

Separating this expression into partial fractions, and 
then re-expanding in powers of z and identifying the 
coefficients with those in Eq. (C25) , yield explicit 
expressions for a(N, k). In this manner, in Ref. 25, 
the following formulas were obtained: 

a(2, k) = 1 + [!k], 

a(3, k) = {-h-(k + 2)(k + 4)}, 

a(4, k) = {rh-(k + 2)(k2 + 13k + 37 

(C28a) 

(C28b) 

+ to + (- )k»}, (C28c) 

a(5, k) = [(n\-o«k + l)(k + 2)(k + 3)(k + 24) 

+ 155k2 + 15k(67 + 3( - )k))]. (C28d) 

In these four equations [x] and {x} indicate, respec
tively, the integral part of x and the integer closest to 
x. From these quantities and the formula 

feN, k) = a(n, k) - a(N, k - I), (C29) 

which follows from Eqs. (CI3) and (CI7), one may 
immediately obtain explicit expressions for feN, k) 
for N up to 5 and arbitrary k. Alternatively, one may 
computef(N, k) directly in a similar manner, starting 
from the generating function 

00 

F N(Z) = L feN, k)Zk (C30a) 
k=O 

'" = II (1 - zlrl. (C30b) 
/=2 

In fact, if a(N, k) is not already known, it is more 
convenient to computef(N, k) directly in this manner. 
Note that Eqs. (C30b) and (C27) imply 

FN(z) = (I - z)AN(z), (C31) 

and that this relation is consistent with Eqs. (C30a), 
(C25), and (C29). Also g(N, k) is more easily ob
tainable directly from the generating function 

00 

G.v(z) = Lg(N, k)Zk 
k=O 

= (1 - z2)F.v(z) 
N 

= II (1 - Zl)-t, 
1=3 

rather than from Eq. (CI6) or 

(C32a) 

(C32b) 

(C32c) 

AN(z) = !a(N, k)Zk. 
k=O 

(C25) g(N, k) = feN, k) - feN, k - 2). (C33) 
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Note that these expressions imply that g(N, k) is the 
number of different solutions of the equation 

N 

k = ! Inz, (C34) 
1=3 

where n! are nonnegative integers. Thus, for N = 3, 
g(3, k) is unity if k is a multiple of 3 and vanishes 
otherwise, a result consistent with the findings of 
Ref. 4. 

Finally we note that the generating function tech
nique is also convenient to obtain the asymptotic 
behavior of the quantities a(N, k), feN, k), and 
g(N, k) at large k. This is done identifying the residue 
of the pole at z = 1, 

lim [(1 - z)NAN(Z)] = (N!)-l, (C35a) 
.-+1 

lim [(1 - z)N-1FN(z)] = (N!)-I, (C35b) 
0-+1 

lim [(1 - z)N-2GN (Z)] = 2JN!, (C35c) 
0-+1 

with the singular behavior of the power expansions of 
these functions at z = 1. In this manner the asymp
totic expression 

lim [a(N, k)kl-N] = [N! (N - 1)q-l (C36a) 
k-+co 

is obtained in Ref. 25. In an analogous manner one 
gets 

lim [f(N, k)k2-N] = [N! (N - 2)!r\ (C36b) 
k-+co 

lim [g(N, k)k3- N] = 2J[N! (N - 3)!]. (C36c) 
k-+co 

APPENDIX D 

In this appendix we study [in the sector (2.4)] the 
classical I-dimensional 3-body problem with pair 
inversely quadratic potentials of unequal strength, 
and we produce an explicit example that violates the 
rule 

(01) 

where Pi indicates the initial momentum of the ith 
particle and P; its final momentum. This rule is of 
course enforced if the coupling constants are all equal; 
an explicit proof in the classical case has been given 
by Marchioro,8 whose treatment we follow here. 

The Hamiltonian of the problem is 

H 1 ~ 2 ( )-2 = - k Pi + ga Xl - X 2 
2mi=I 

+ gl(X2 - Xa)-2 + g2(Xa - Xlr2, (02) 

where the coupling constants gi are all nonnegative. 
It is convenient to introduce4 •8 the variables rand p, 

defined by 

r cos p = (Xl + X2 - 2X3)fJ6, 

r sin p = (Xl - x2)JJ2. 

(03a) 

(D3b) 

Then in the center-of-mass frame the Hamiltonian 
becomes 

H = 2~ (p; + r- 2
p!) 

+ tr-2{g3(sin p)-2 + gI[sin (p + ~-1T)r2 
+ g2[sin (p + tlT)t2}, (D4) 

where Pr and p", are the momenta conjugate to rand cp: 

dr 
Pr = m dt' 

2 dp 
P = mr-

'" dt 

(DS) 

(06) 

The separability of the Hamiltonian (04) implies the 
existence of a second constant of the motion B2, in 
addition to the energy E: 

E = _1_ p2 + B2r-2 
2m r , 

(07) 

B2 = _1 p; + i{g3(sin p)-2 + gI[sin (p + ilT)r2 
2m 

+ g2[sin (cp + tlT)t2}. (08) 

From Eqs. (07) and (05) we getS 

) (
2E 2 2)! 

ret = -;;; t + rmin , (09) 

where 
rmill = reO) = BE-!; (010) 

then from Eqs. (08), (06), and (09) we get 

F[p(t)] = F[p(-oo)] + arctg (tfT) + 117, (011) 

where 
T = rmin(mJ2E)t = (BJE)(im)t, (012) 

and 

F( p') = dcp[1 - t1J2{ga[sin cp ]-2 f"" 
+ gl[sin (p + %1T)r2 

+ g2[sin (p + tlT)r2}]-t. (013) 

We are interested in the asymptotic behavior of the 
particles in the remote past and future, when they are 
widely separated and move freely. We set by definition 

X 1(t) ----+ p;tJm + a; + 0(t-1
), 

t-++oo 

x;(t) ----+ pitfm + ai + OCt-I), 
t-+-aJ 

(014) 

(015) 
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and since we are working in the center-of-mass frame, 
we also have 

3 3 

I Pi = I P; = O. (016) 
i=1 i=1 

Moreover the initial momenta Pi must be consistent 
with the inequalities 

PI ~ P2 ~ P3 (017a) 

characterizing an incoming state (particles approach
ing each other), while the momenta P; shall be con
sistent with the opposite inequalities 

(017b) 

characterizing an outgoing state. For simplicity. we 
also choose the origin of the x axis to coincide with 
the center-of-mass, so that 

3 3 

I ai = ~ a; = O. (018) 
i=l i=l 

Now from Eq. (09) we get 

ret) ---+- ±(2E/m)!t + O(t-l); (DI9) 
t .... ±oo 

from this equation and Eq. (03b) we obtain 

'P( - 00) = arcsin [!(P2 - Pl)(P; + pi + PIP2)-t]. 

(020) 
We have also used the obvious relation 

1 ~ 2 l( 2 2 ) E = - L, Pi = - PI + P2 + PIP2 , 
2mi=1 m 

(D21) 

which can be explicitly obtained from Eqs. (015), 
(016), and (DI9), and from the relation 

r2 = H(xl - X2)2 + (X2 - xa)2 + (xa - Xl)2], (D22) 

which is implied by Eqs. (03). 
But once Ij!( - 00) is known, Ij!( + 00) can be evalu

ated from the implicit equation 

F[Ij!( + 00)] = F[Ij!( - 00)] + 7T, (023) 

which is a special case of Eq. (OIl); from Ij!( + 00) 
the final momenta are determined through 

p{ - P~ = 2(p; + P: + PIP2)t sin Ij!( + 00), (024) 

p{ + P; = (J3)(P~ + p~ + PIP2)! cos Ij!(+oo), 

(025) 

which follow from Eqs. (014), (019), and (03). Note, 
however, that the implicit function F[Ij!] contains also 
the constant B2, which must also be determined from 
the initial data. This can be done from Eq. (08), which 

yields 

8 2 = .i.. p!( - 00) + Hga[sin q{ - 00)t2 
2m 

+ gl[sin (Ij!( - 00) + ~7T)t2 
+ g2[sin (ql{-oo) + t7T)t2}. (D26) 

As for p,,( - 00), it can be obtained from Eqs. (D6), 
(D3), (015), and (018), and we find 

p,,( -00) = J3(P1a2 - P2al)' (027) 

Note that p,,( - 00), and therefore also B2, depend 
not only on the initial momenta Pi' but also on the 
constants ai of Eq. (015). 

All the steps for the computation of the final 
momenta p; from the initial data Pi and a, are now 
ready, the relevant equations being (DI6), (020) 
[to evaluate Ij!( - 00) from the initial momenta Pi]' 
(016), (018), (D27), (D26) (to evaluate the constant 
B2 from the initial data Pi and ail, (D23) [to evaluate 
Ij!{ + 00) from Ij!( - 00) and 8 2], and finally (D 16), 
(024), and (D25) [to evaluate the final momenta P; 
from Ij!( + 00)]. The remaining difficulty is the in
ability to perform explicitly, in the general case, the 
integral in the definition of F(Ij!), Eq. (013). In the 
special case 

(028) 

to which attention is hereafter confined, this integral 
can be cast into the form 

F(Ij!) = ~ dx(l - 4x) 1 fCos!" 

x (c1x + C2X
2 + caxa + c,x')-!, (029) 

where 
C1 = I - i(8g1 + ga)B-2, 

C2 = -9 + 4(ga - trl )B-2, 

Cs = 24 - 8(ga - gl)B-2, 

C, = -16. 

(D30a) 

(030b) 

(03Oc) 

(03Od) 

If in addition we assume the initial data to be such that 

(031a) 
or, equivalently, 

(D3Ib) 

then the integral of Eq. (029) can be performed and 
it yields 

F() -1(9 + rt . (12 + y)COS
2

1j! - 9-y 
Ij! = 2 y arCSIn COS21j! [y(y + 8)]! 

. -16 cos2 
Ij! + 12 + 'Y) + arCSIn t' (D32) 

[y(y + 8)] 
with 

y = 4(gl - ga)8-2 = 8(gl - g3)/(8g1 + gal. (033) 

We are assuming that y is positive. 
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The derivation of rp( + (0) from rp( - (0) through 
Eqs. (032) and (023) still involves the solution of a 
transcendental equation; it cannot therefore be done 
explicitly. But the main purpose of this discussion 
is to prove that the rule (01) need not hold if the three 
coupling constants gi are not all equal. This is easily 
done by assuming its validity in one specific example, 
and showing that there results an inconsistency. Thus, 
we assume 

PI = - p, P2 = 0, P3 = p, (034) 
and 

P; = p, p~ = 0, p~ = -p, (D35) 

with p positive [so that the inequalities (017) are 
satisfied). The choice (034) implies, through Eq. 
(020), 

rp( - (0) = 1r7T, 

while the choice (035) yields 

rp( + (0) = t7T = rp( - (0). 

(D36) 

(D37) 

[This is consistent with the remarks that generally 
the rule (01) corresponds to rp( (0) = 17T - rp( - (0»). 

But the result (D37) is clearly in~onsistent with 
Eqs. (D23) and (D32), at least so long as the argu
ments of the arcsin functions of Eq. (D32) are in the 
interval between -1 and 1. [Note that this is never the 
case if gl = gs, i.e., if all coupling constants are equal; 
in fact, in this case, Eq. (032) is meaningless, because 
y vanishes. Indeed, the correct integration of Eq. 
(029) in this case reproduces Marchioro's results,S 
yielding the rule (01).] When gl is larger than g3' 
this condition is easily satisfied, for instance, by the 
simple choice g3 = 0, in which case y = I and the 
arguments of the arcsin functions become -if and 1, 
respectively. As for the condition (031), which we had 
to assume in order to perform explicitly the integra
tion that led to Eq. (D32), it is easily seen that, 
through Eqs. (D27), (034), and (D26), it becomes 

ai = m(gl - g3)/ p2, 

so that it can always be enforced by appropriate 
choice of the initial constant a2 • 

APPENDIX E 

In this appendix we disprove the conjecture that 
the spectrum of the problem of Sec. 2 is completely 
linear even if the coupling constants of the inversely 
quadratic interaction are different for different pairs. 
This we do by displaying an explicit example that 
violates this conjecture. This is the 3-body model 
characterized by the Hamiltonian 

H = Ho + €(x) - X2)-2, (EI) 

where Ho is the Hamiltonian of Sec. 2, Eq. (2.1), with 
N = 3, and € is a small parameter. The spectrum of 
this model is then given by the formula4 

Enl = 1l(l)(~)![2n + B1(€) + J], (£2) 

where B~( €) are the eigenvalues of the differential 
equation4 

(_.!!....~ + 9g + € )F(rp) 
2m oq} 2 sin2 3rp 2 sin2 q; l 

= B~(E)FI(rp), ° ~ rp ~ j7T. (E3) 

For € = 0, the complete set of eigenfunctions of this 
equation are4 

Fz(q;) = (sin 3rp)a+!c~+!(cos 3rp), 1= 0, 1,2,"', 

(£4) 

where Cf is a Gegenbauer polynomial,12 and the 
corresponding eigenvalues are 

BI(O) = 3(1 + a + 1)(li2/2m)~, 1 = 0, J, 2, .... 

(£5) 
Here, a is defined by Eq. (2.9). 

To first order in € the eigenvalues B~(E) are given by 

(E6) 
where 

(£7) 

Thus, to first order in € the energy spectrum is 

En' = IlOJ(~)![2n + 31 + 3a + t 
+ tE~I(1 + a + 1)-lmli-2]. (ES) 

Therefore, if the spectrum is to be completely linear, 
it should be true that 

PI = p(l + a + t) + v(l + a + W, (E9) 

where p and v are numerical constants. This implies 
the condition 

6~o - S~l + 3~2 = 0. (E1O) 

A simple example that demonstrates that this equation 
is not verified obtains considering the special case 
where a = i.26 Then with a little algebra this condition 
becomes 

rh Jo dq; sin 3tp[sin 15tp - t sin 9q;][sin 3tp/sin tp]2 = 0, 

(Ell) 

and it is easily seen that this equality does not hold. 
Note that if the perturbing potential had maintained 

the equality of the coupling constants, i.e., if it had 
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been of the form 

E[(XI - X2)-2 + (X2 - X3)-2 + (x3 - X 1)-2] 

= ter-2 sin-2 3q;, (EI2) 

the term (sin 3tpjsin rp)2 in the integrand of Eq. (Ell) 
would be missing; then of course this equation would 
be satisfied. Indeed, in such a case Eq. (E9) holds, 
with v = 0 and f1 = 9/a. 

Although we have for simplicity displayed only a 
very special example in which the conjecture of 
complete linearity of the spectrum is violated, it is 
obvious that, for I-dimensional models with quadratic 
and inversely-quadratic forces, this property is the 
exception rather than the rule, holding only in some 
special cases such as those considered in Sec. 2 (all 
particles equal) or in Sec. 3 (all particles equal 
within each family, the same quadratic interaction 
between all pairs, no inversely quadratic interaction 
between different families). 
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The combinatorics of the boson operator formalism in the construction of the SU(n) states provides 
a natural scheme for the appearance of certain generalized hypergeometric functions. It is shown that, 
while sp.ecial cases exist where the functions thus generated belong to the class of generalized hyper
geometnc functions defined by Gel'fand et al. as being the Radon transforms of products of linear 
forms, the general cases apparently do not. This is already so at the SU(4) level. 

1. INTRODUCTION 

In the representation theory of unitary groups, 
much has been known on the problem of explicit 
construction of state vectors for the irreducible 
representation, in particular, with the device of the 
boson operator formalism.1 One of the crucial prob
lems lies in the structural analysis of a general state 
vector such that hopefully the algebraic complexities 
which mount extremely rapidly as the rank of the 
group goes up may be systematically controlled. 

In recent years, some efforts have been made in, 
among other things, the combinatorial structure of 
the state vectors for the irreducible representation 
of U(n).2-5 In particular, it was found2- 5 that one can 
readily obtain the normalization constants by carry
ing out essentially the following steps: (i) A general 
state vector is obtained by applying an appropriate 
string of lowering operators from a so-called semi
maximal state,6 the latter being expressed as appropri
ate products of (antisymmetrized) determinantal 
factors of creation operators (each factor being raised 
to an appropriate power) acting on the vacuum 
state; (ii) the process of pushing through the lowering 
operators all the way to the right results in the 
combinatorics as a consequence of the canonical 
commutation relations. 

One of the problems then is to study the combina
torial structure entailed in the step (ii) above. More 
explicitly, Baird and Biedenharn2 have shown that 
for SU(3) the operator-valued polynomials can, in 
fact, be formally expressed in terms of the well-known 
Gauss hypergeometric function 2F1(a, b; c; x); namely, 

Igeneral SU(3) state) 

= const (product of antisymmetrized creation 

operators) 2F1(a, b; c; x) 10), (1) 

where the coefficients a, b, and c depend linearly on 
the GeI'fand labels7 of the state, while the variable x 
is formally an operator quotient in such a way that 

all the denominators are cancelled eventually by 
appropriate multiplicative factors outside the hyper
geometric function. 

Attempts have been made by Ciftan and Bieden
harn4 and in particular by Ciftan5 to generalize Eq. 
(I) to higher rank unitary groups.s Unfortunately, 
because of the increasing algebraic complexities, no 
simple expressions analogous to Eq. (1) are known. 
For SU(4), Ciftan was able to recognize the structure 
of the individual block constituents, where each block 
of terms essentially corresponds to the action of one 
particular lowering operator (raised to a power), 
but the expression for a general SU(4) state was left 
as a sixfold sum of operators. 

The main purpose of this paper is to answer some 
questions raised by Ciftan's treatment of the SU(4) 
state. The way that combinatorics of boson calculus 
provides a natural scheme for the appearance of 
certain generalized hypergeometric functions is rather 
intriguing. In view of considerable interest in the 
connection between special functions and group 
theory,9-12 it is perhaps desirable to ascertain what 
class of functions does such generalization via 
combinatorics lead to. 

In fact, at the SU(n) level, the Gauss function 2F1 
appears as a consequence of the action of the lowering 
operator (L~=i)~. The Appell function 13•14 of the second 
kind, F2 , is obtained from the action of (L~=~)~. The 
Lauricella function15 of the fourth kind, F D' in 
several variables occurs as a result of the operation of 
(L~=:)~. These statements are obvious generalizations 
of the case n = 4. [See Eqs. (9)-(11) below.] 

The fact that these Appell and Lauricella functions 
appear so rarely (if at all) elsewhere in theoretical 
physics perhaps warrants a systematic analysis of 
such functions, and generalizations thereof via the 
boson calculus of the SU(n) state. 

It is obvious that the combined action of products 
of lowering operators will lead to a multiple sum of 
products of folded blocks of terms. For example, at 
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the SU(4) level, one already has to deal with a folded 
product of the Gauss, Appell, and Lauricella func
tions. 

In analyzing the structure of these new,functions 
beyond the known repertory, one criterion used is to 
check whether their integral representations admit a 
definite pattern of generalization. One class of 
generalized hypergeometric functions has been defined 
by GeI'fand et al. 16 as the Radon transforms16 of 
products of linear forms. It so happens that all the 
known hypergeometric and generalized hypergeometric 
functions such as the Gauss, Appell, and Lauricella 
functions have this propertyP The question arises 
whether this feature holds for all functions generated 
for the general SU(n) states. This question was hitherto 
unsettled even for n = 4. We show that, in general, 
these combinatorially generated functions for the 
SU(n) states are not confined to the class of generalized 
hypergeometric functions which are Radon trans
forms of products of linear forms. Already at the 
SU(4) level, while special cases may possess such 
property, the general SU(4) states do not. This in 
essence answers the questionS posed by Ciftan in a 
negative way. 

2. COMBINATORIAL STRUCTURE FOR 
GENERAL SU(4) STATES 

There are obvious advantages in reaching a general 
SU(n) state by approximate application of lowering 
operators from the semimaximal state. Besides the 
apparent ease of getting the normalization constants,4 
a subject which will not concern us here, the structure 
of the semimaximal state is sufficiently simple so that 
the combinatorics ensued in pushing through the set 
of lowering operators can be systematically controlled. 

We shall assume that the reader is reasonably 
familiar with the boson operator formalism2 for the 
representations for the U(n) groups. Thus we shall 
merely sketch the necessary expressions for the sake 
of getting the notations straight. 

In terms of the creation and annihilation operators 
a~;') and ii~A), the elements of the Lie algebra read 

E·· = , a (A) aW i J' = 1 ... n (2) o k t :J" , ,. 

The commutation relations 

[Ei;' Ers] = b;rEis - bisEri (3) 

follow from the canonical commutation relations for 
the a's, 

[a~).), a~).')] = biib).).'. :,(4) 

In terms of the (anti symmetrized) determinantal 
factors 

where €(ili2 ••• is) is + I if the set of indices is an even 
permutation of (1,2, ... , s) and is -1 otherwise, 
we have thus 

Igeneral SU(4) state) 

_ (m14m13m24m23m34m330~ 
m12 m22 

mu 

X (m14m13m24m23m34m33°1~ 
m 13 m 23 

m13 

= const (L~)'I12(L~t23(Liy13(a123y33(a124)"3! 

X (a12)yz'(a14)nU(alr13(a4)nu 10), (6) 

where the set of lowering operators are related to the 
Eti as follows3 : 

L~-l==Ek.k_l' k=2,···,n-l, (7a) 

L~-2 == Ek-2,k-lEk.k-2 + Ek.k-lE k-l.k-2' etc., (7b) 

(7c) 

In the exponent, the following short-hand notation 
is used: 

We note first the action of each operator separately. 
On the SU(4) level, (Li)n13 leads to the Appell function 
of the second kind F2 ; (L:)nu gives the Gauss function 
2Fl, and finally (L~)n12 yields the Lauricella function of 
the fourth kind FW in 3-variables.2•5 Since these are 
crucial ingredients, they have been rederived and 
recorded here below for the sake of readability. The 
defining power series expansions and their integral 
representations are given in the Appendix. We have 

(L~}n13(a124t"(a12Y"(a14)n"(al)V1310) 
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(L2)"'"(a , )"31-kl('1 ,)V23 10) __ r(v23 + I) ( )"31-AOI( )Vn-"23( )"23 
3 124 .' 12 1'( + 1) Cl 124 Cl 12 a 13 

V23 - n23 

x 2F1(-n23, -n34 + k l ; V 23 - 11 2a + I; wa) 10), (9) 

(L~)"I2(ala4)k3(ala)1I23-k3(a14)"2d'(al)'13-tlI3+k'10) = r(~~~n~ ~2I~ 1) (n
1<_--;'2:;:>" (ala4)k'(alS)"23-"u-k. 

x (Cl14)"21-k'(aIY13-III.loAO'(a2a)"12 

X FW(-n I2 ; -n24 + k2' -V13 + n la - k2' -k3; 

1 + 11 23 - n12 - k3; w4 , wo' ws) 10), (10) 

where (c)r == r(c + r)/r(c)o The lI"s are defined in Eqo (13) below. Expressing the 2Fl' F2, and Ft} in the 
standard single, double, and triple power-series expansions, respectively (see Appendix), we get from 
Eq. (6) 

Igeneral SU(4) state) = const X (a123)"33(a124)"31(a12)""-"I3(aI3)"23-"\I 

X (a 14)"21(a23)"I2(a1Y13-"1'(a3)"13(a,Y'uS(4) 10), (\1) 

S(4) = L (-n 13h1+k.( -na4)kl( -n24),... (n 12 - n23h.( -n34 + k1)k3 

k .... ·.k. (-s - Ih.(l + V13 - n13h. (1 + V23 - n23)k3 

(-n 12h.+k.+k.( -n24 + k2)/r.( -V13 + n13 - k2)k.( -k3)k. ITs (w;t; 
x ---

(l + n23 - 1112 - k3)k,H.lk. j=l k;! ' 
(12) 

where 

a123a4 
W 1 =--, 

a124a3 

a12a134 w3 =---, 
alaa124 

a2a13 
Ws = ---, 

a1a23 

a1aS4 
w2 = ---, 

aaa14 

a13a24 
W4 =--, 

a14a23 

a13a234 
W6 =---· 

a2Sala4 

(13) 

Equation (II) is essentially equivalent to Eq. (4.6c) 
of Ref. 5, apart from some obvious misprints there. 

Using the standard integral representations13 •14 for 
those block constituents in (12), one can easily con
vert the sixfold summation into a fourfold integral 
representation18 : 

1 

S(4) = const x IIII dt1 dt2 df3 dt4 

o 

x tln .. -lt;"24-1t;,,··-lt,"12-1 

x (1 - (1)"34-8- 2(1 - t 2)" .. +>13-n 13(1 - la)''' 

x (1 - t4)"23(1 - w,t,)nU(1 - Ws/,)"13-nu 

X [I - IVata(l - W 6t4)/(1 - t4)]n34 

x {I - W1t1[1 - W3ta(l - W6t4)/(1 - t4)]-1 

(14) 

By inspection, one easily convinces oneself that, 

because of the delicate folding of variables involved, 
it does not seem likely that Eq. (14) in general can be 
brought to be the Radon transform of products of 
linear forms. In the next section, we shall see that 
only special cases of Eq. (14) will have such a simple 
property. 

3. RADON STRUCTURE OF THE SEMISEMI
MAXIMAL SU(4) STATE 

This is another case which was started by Ciftan but 
was left unsettled. For the semisemimaximal state, 
i.e., the state with n12 = 0, or rn12 = rnn , the net 
effect is that the threefold summation involving the 
Lauricella function is now absent. The analog of Eq. 
(14) here is thus considerably simpler: 

S(4)(n 12 = 0, W4 = Ws = W6 = 1) 
1 

= const xIII dtl dt2 dlatl1131-1f;" .. -lt;"23-1 

o 

x (1 - (
1
)"34-8- 2(1 - t

2
)n21+V\3-"13 

x (1 - la)"23(1 - Wafa)"" 

x [1 - W} t1/( 1 - wata) - W2t2]"13. (IS) 

Equation (15) can be easily cast into the Radon 
form with the aid of the following change of variables: 

Xl = wIt}, X 2 = 1 - 11'212, 

Xa = (1 - \I'2t2)(1 - Wa1a)· (16) 
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We have 

S(4)(n 12 = 0, W4 = wa = Ws = 1) 

= const x W;+2W~'3-V'SW;23-V2S 

9 

X II (~(k), X)b k, (17) 
k~1 

where 
4 

(~, x) = ! ~iXi 
i~l 

denotes a linear form and the coefficients are 

~(l) = (I, 0, 0, 0), ~(2) = (0, 1, 0, 0), 

~(3) = (0,0, 1,0), ~(4) = (-1,0, 1,(»), 

~(a) = (0,1, -1,0), ~(s) = (0, W3 -1, t,O), (lSa) 

~(7) = (I,O, 1, 1), ~(S) = (WI - 1, w1, WI' WI), 

~(9) = (W2 - I, IV2 , 1V2 - I, \V2 - I), 

b2 = n13 + n23 .,.... n 34 - "'23' 

b4 = n13 , 

bs = -n23 - 1, 

b7 = -n24 - 1, 

bg = n 24 + "'13 - n13 • 

(1Sb) 

bs = n34 - s - 2, 

The right-hand side of Eq. (I7) is readily recognized 
as the Radon transform of products of linear forms 
in a 4-dimension space. However, as mentioned 
earlier, unfortunately the general case Eq. (14) does 
not share this property. 

We thus conclude that the class of functions gener
ated by the boson combinatorics, in general, is not 
confined to the class of generalized hypergeometric 
functions defined as Radon transforms of products of 
linear forms. 

APPENDIX 

For the sake of readability, we give here the relevant 
definitions and integral representations for the Gauss, 
Appell and Lauricella functions involvedI3 •l4 : 

(a) The Gauss function 2Fl: 

2FI(a, b; c; z) 

=! (aMb)k Zk 
k~O (C)k k! 

(AI) 

= r(c) edt tb- l(1 _ t)C-b-l(l _ Zt)-a; 
rCb)r(c - b) Jo 

(A2) 

(b) The Appell function of the second kind, F2 : 

F2(a; bl , b2 ; Cl , C2 ; ZI' Z2) 

__ '" (ah,+k2(b Ih,(b2)k2 zJ' Z~2 
£.., (A3) 

k"A'2 (C1)k,(C2)k2 kl! k2! 
r(CI)r(C2) 

r(bl)r(Cl - b1)r(b2)r(C2 - b2) 

1 

x J J dtl dt2t~l-lt~2-1(l - tl}",-b,-l 

o 
x (1 - t 2)"2-b2-1(1 - ZItI - Z2t2)-a; (A4) 

(c) The Lauricella function of the fourth kind, 
FY;" in n-variables: 
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Dual transformations in many-component Ising models in two dimensions on a square lattice are 
studied. The models considered include those of Ashkin and Teller and of Potts. In certain cases the 
dual transformation is a relation between the partition function of a lattice at high and low tempera
tures and can be used to determine a unique critical temperature if one exists. Dual transformations 
are considered both from a topological and an algebraic point of view. The topological arguments are 
a natural extension of those used by Onsager for the 2-component Ising model. The transfer matrices 
for these models are constructed, and it is shown how the dual transformation arises in this formula
tion of the problem. The algebras generated by these models are investigated and provide a generaliza
tion of the spinor algebra introduced by Kaufman in the 2-component Ising model. 

1. INTRODUCTION 

The Ising model is of great interest and importance 
in the theory of phase transitions. The original model, 
proposed by Ising,1 is a 2-component model in which 
each site of a crystal lattice is occupied by one of two 
kinds of atoms. Only nearest-neighbor interactions 
are considered. Equivalently, each site could be 
regarded as occupied by a classical particle with spin 
S = t, each spin assuming two orientations "up" or 
"down" corresponding to the two kinds of atoms. 

Dual transformations have played an important 
role in the development of the Ising model. Kramers 
and Wannier,2 using a matrix approach to the 2-
component Ising model on a square lattice in zero 
magnetic field, were able to derive a relation between 
the partition function (PF) at high and low temper
atures. By assuming the existence of a single critical 
point, they were able to determine the critical temper
ature. Onsager,3 using topological arguments, gen
eralized the results of Kramers and Wannier to a wider 
class of 2-dimensionallattices. Onsager3 and Kaufman, 4 

using the transfer matrix approach, also indicated 
how the dual transformation arises in this formulation 
of the problem. In general, a dual transformation is a 
relation between the PF of one lattice with certain 
Boltzmann factors and the PF of another lattice with 
other Boltzmann factors. The transformation between 
the two sets of Boltzmann factors is reciprocal. In 
certain cases this transformation defines a relation 
between the PF of a lattice at high and low tempera
tures. This relation can then be used to determine a 
unique critical temperature if one exists. 

A number of generalizations of the original Ising 
model have been considered. We will be concerned 
here with many-component models in which each site 

of a lattice is occupied by one of q different kinds 
of atoms. In 1943 Ashkin and Teller5 considered a 
4-component model on a square lattice on which each 
lattice site is occupied by one of four kinds of atoms. 
Using topological arguments, they demonstrated the 
existence of a dual transformation for their model and 
located the transition temperature in the special case 
where nearest-neighbor-like atoms have an interaction 
energy EO and unlike atoms have an interaction energy 
101 with EO < 101' The low temperature state is thus an 
ordered one. 

Several generalizations of the 2-component Ising 
model have been proposed by Potts6 in which each 
lattice site is occupied by one of q different kinds of 
atoms. In one model (which we will call the Potts 
model) there are only two independent interaction 
energies. Nearest-neighbor-like atoms have an inter
action energy EO and nearest-neighbor-unlike atoms 
an interaction energy 101 with EO < 101 , Using the 
Kramers-Wannier matrix approach, he was able to 
demonstrate a relation between the PF at high and 
low temperatures and thus locate the transition 
temperature for all q. Fisher' has used a topological 
approach to obtain the dual transformation and hence 
to locate the transition temperature for the Potts 
model. Potts6 also considered another model in which 
the q configurations of each lattice site are represented 
by a 2-dimensional vector which can point in anyone 
of q symmetrically placed directions. We will refer to 
this model as the Potts vector model. Again using the 
matrix approach, he was able to locate the transition 
temperature for q = 3, 4. It was pointed out inde
pendently by Betts8 and Suzuki9 that the Potts vector 
model for the case q = 4 factorizes into two inde
pendent 2-component models and is thus exactly 
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soluble. In the case q = 3 the two Potts models are 
equivalent. 

The purpose of this paper is to study the existence 
of dual transformations in many-component Ising 
models in two dimensions on a square lattice. The 
models considered include thost! of Ashkin and Teller 
and of Potts, but it is also indicated how their results 
can be generalized in certain directions. We have 
derived the dual transformations in these models both 
from a topological point of view and by construction 
of the transfer matrix. The topological arguments are 
a natural extension of those used by Onsager3 for the 
2-component Ising model and simplify those used by 
Fisher7 in the case of the Potts model. The transfer 
matrix approach is also interesting, and the algebras 
generated by these models are investigated. These 
considerations are a generalization of spinor approach 
used by Kaufman4 in the 2-component Ising model. In 
Sec. II we discuss the 3-component Potts model, 
first, from a topological point of view and, second, 
we construct the transfer matrix. It is interesting to 
note that this transfer matrix is a quadratic form in 
certain operators. The dual transformation is then a 
similarity transformation of these operators. In Sec. 
m we discuss the 4-component Ashkin-Teller model 
again from the topological viewpoint and also con
struct the transfer matrix. The methods used in these 
two examples are easily generalized to higher-com
ponent models, and these generalizations are discussed 
in Sec. IV. 

2. THREE-COMPONENT SYSTEM-POTTS 
MODEL 

A. High-Temperature Expansion 

Consider a 2-dimensional square lattice the sites of 
which are occupied by one of three kinds of atoms, 
A, B, or C. We suppose that only nearest-neighbor 
atoms interact with energies EO if the neighbors are 
identical and El if they are different with EO < E1 • 

At low temperatures the system will then be ordered. 
It is convenient to define Boltzmann factors IX and {J by 

(2.1) 

where T is the temperature and k is BO"zmann's 
constant. Three diagonal matrices are defined by 

pIU ~ (1 0 J p'" ~ (0 1 J p'" ~ (0 0 J 
(2.2) 

and we introduce projection operators p;i) with re
spect to the A, B, and C atoms at site r of the lattice. 

We may write the energy of interaction, Ers ' of atoms 
at adjacent sites rand s as an operator, using the 
obvious vector notation 

E = E - (E _ E )(p(l) p(J) + p(2)p(2) + p(3)p(3» 
rs 1 lOr s r sr., 

(2.3) 

The total energy of a given configuration of atoms 
over the lattice is given by Ee = I(nn) E rs , where the 
sum extends over the 2N nearest-neighbor (nn) pairs 
on a square lattice of N sites with periodic boundary 
conditions. The PF is given by 

Z.\'(oc, (J) = Tr IT exp (- Ers
), (2.4) 

nn kT 

where the trace is taken over the 3.\'-dimensional 
vector space of configurations. Since projection 
operators commute and have the property (Pr • Ps)2 = 
(Pr • Ps), a given factor in (2.4) may be written 

exp (-Er.,/kT) = {J + (IX - {J)P,.'Ps' (2.5) 

This can be written in a more convenient form by 
introducing a diagonal matrix 

0= (I (I) ), (I) = e2;;,/3 (2.6) 

o} 

and defining, as before, Or with respect to the rth site. 
The projection operators may then be expressed by 

and 

3P~1) = I + Or + 0:, 

3P~2) = I + w 20 r + (1)0-;, 

3P;31 = I + wOr + olO-;, 

(2.7) 

3Pr • P s = 1 + OrO; + 0;-0.. (2.8) 

The PF may now be written 

Z'y(oc, (J) = - Tr IT 1 + - (OrO; + n;-Os) (
U

2
).Y (X ) 

3 nn II 

(2.9) 
with 

3~u = IX + 2{J, (2.10) 

The only nonzero terms in the product (2.9) occur for 
terms like 0;, OrO;:, and (0;:)3 since Tr 0; = 3, etc., 
and the trace of all other types of terms is zero. We 
can represent each term in the expansion of the 
pn:duct (2.9) graphically as follows: Let OrO~ be 
represented by a directed bond from site s to site r, 
s .~-. r. The above conditions imply that at each 
site we have as many arrows entering as leaving or that 
either three arrows enter or leave. Each arrow or bond 
contributes one factor of x/u. Of course, there may 
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(4) (8) 
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FIG. 1. (a) Possible arrangements of directed bonds at a lattice 
site. Numbers in parentheses indicate the number of possible 
configurations. (b) Examples of admissible diagrams. (el An 
inadmissible diagram. 

also be no bonds at a lattice site. The types of dia
grams that can occur at each site are shown in Fig. 1 (a). 
A diagram is considered admissible (i.e., contributes 
to the PF) if every lattice site is similar to one of those 
in Fig. 1 (a). Examples of admissible diagrams are 
given in Fig. I (b). These diagrams are members of a 
class called directed polygonal planar graphs.lo.n A 
simple example of a planar graph which cannot be 
directed according to the above rules is shown in Fig. 
I (c). Later we will show that all admissible diagrams 
can be face colored (including the exterior face) with no 
more than three colors such that no faces with an edge 
or bond in common have the same color. We will also 
show that every planar polygonal graph which can be 
three-colored can be directed so as to be admissible. 

In the admissible diagrams we have a prescription 
for calculating an expansion of ZN in powers of x/u. 
Thus we have obtained a functional representation 
Zx(oc, (J) = U2Nhv(X/U) with Ix defined by a power 
series. In the high temperature region oc '" {J ,...., 1 
and x «u. We assume that the power series defining 
J:.v converges. The partition function per particle in 
the thermodynamic limit is given by 

Z(oc, (J) = lim [Z,,{oc, (J)]lfS 
.:.Y-oo 

= u~(x/u), (2.11) 

where the second result applies at high temperatures. 

B. Low-Temperature Expansion 

If NAA is the number of AA bonds, NAB the number 
of AB bonds, etc., then the total energy of a given 
configuration L of the lattice is 

EL = €o(NAA + NUll + Ned 

+ €l(NAU + NAC + NBd. (2.12) 

The total number of bonds 2N satisfies 

2N = NAA + Nun + Nec + NAB + N Ac + NBC' 

The Boltzmann factor corresponding to E L is 

exp (-EL/kT) = OC2S({J/OC)XAB+NAC+A'IlC, (2.13) 

and the PF can be written as a power series in {J/oc, 

2Y ~ (JI I Zx( OC, (J) = 31'1.' "" gs(l)( oc), (2.l4) 
I 

where g,y(l) is the number of configurations with 
I = N.1..B + NBC + N AC • The factor of 3 arises 
because the lowest-energy state E = 2NEo is triply 
degenerate. If we start from a configuration of all A 
atoms, then, as we change A atoms to B or C atoms, 
we generate a power series in fJ/oc. Clearly this is a 
low-temperature expansion for EO < El' lim fJ/oc -+ 0 
as T -+ O. Then from (2.11) and (2.14), in the thermo
dynamic limit, the partition function has the following 
functional representation: 

Z(IX, (3) = oc2g«(3/oc), 
= u?f(xfu), 

fJ « IX, 

fJ ,...., IX. (2.15) 

The existence of the dual transformation is related to 
the equivalence f(x) = g(x). If this equality holds, 
then one can imagine constructing a lattice with 
Boltzmann factors u and x related to oc and fJ by the 
reciprocal relations (2.10). The new lattice will have a 
PF Z(u, x), 0 < x < u, and the PF's of the two 
lattices will be equal: 

Z(u, x) = Z(oc, fJ). 
A topological proof, similar in spirit to Onsager's 

original proof with respect to the 2-component Ising 
model, yields the necessary equality of the PF's. 
Imagine an infinite face-centered square lattice in two 
dimensions. This lattice separates into two interpene
trating square lattices I and II. Label the lattice sites 
of I with A, B, and C according to some configuration 
L. The sites of lattice II will be unlabeled. For every 
AB, BC, or AC bond in I, draw a perpendicular bond 
in II. There is now drawn in II a planar polygonal 
graph. This graph can be directed to become admis
sible as follows. Choose an order for the atoms say 
ABCAB. Suppose one is standing on a site of I and 
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looking across a bond of II at a neighboring site. Then, 
if the atom at which one is looking follows the atom 
on which one is standing in the chosen order, direct 
the bond to the left. If it reverses the order, direct the 
bond to the right [see Fig. 2(a)]; jf the two atoms are 
the same, of course, there is no bond. This procedure 
has been used recently by Baxter12 in connection with 
the problem of coloring a hexagonal lattice. Some 
examples of situations that can occur are given in 
Fig. 2(b). All possible configurations on I now yield 
admissible diagrams on II. Note that if in an admis
sible diagram all arrows are reversed, another 
admissible diagram results. The transformations 
A -+ B -+ C -+ A and A ~ C -+ B ~ A and the 
identity all yield the same admissible diagram while 
the three transpositions A {--~ B, B - C, and C ~-) A 
yield the diagram with all bonds reversed. There is thus 
an admissible diagram for every three configurations. 
If we consider only finite diagrams (graphs with a 
finite number of bonds) and choose the infinite face to 
contain only A sites, there is a one-to-one relationship 
between configurations and admissible diagrams. 
Actually, we have only shown that for every configura
tion there is an admissible diagram. We must show 
the reverse, that for every admissible diagram there 
is a configuration on I. Equivalently, we can show 
that every admissible diagram can be face colored 
with at most three colors. This is proved in Appen
dix A. 

In the limit of large N, the coefficients of x/u and 
f3/rx in the two expansions ofZx(rx, f3), (2.9) and (2.14), 
become equal. We obtain the result 

Z(rx, fJ) = rx2J(f3/rx) , f3« rx, 

= u2J(x/u), f3 ,....", rx. (2.16) 

The result is that, for every lattice constructed with 
Boltzmann factors IX and f3, there is a dual lattice 
constructed from Boltzmann factors u and x, the 
transformation being reciprocal. Alternatively, we 
may regard (2.16) as giving a relation between the 
high- and low-temperature behavior of the PF. If 
there is a unique critical temperature, it must occur 
when x/u = f3/rx with the solution rx/{J = I + .,/3, a 
result first given by Potts.s For the 2-component Ising 
model rx/f3 = 1 + .,/2. 

The 2-component Potts model is related to the 
problem of the residual entropy of 2-dimensional 
square ice. Topologically, the square ice problem can 
be reduced to counting the number of configurations 
W on a square lattice in which all nearest-neighbor 
vertices are joined by directed bonds. The ice con
dition at each vertex is that exactly two arrows point 

(0) 

A A ~c ± .. .,. 
B B c c 

~~ -- ~ I A -- ~;F 

(b) 

c c 

FIG. 2. (a) Rules for directing bonds scpamting ditrcrcnt com
ponents. (b) Examples of possible arrangements of componcnts at 
a vertex. 

into each vertex and two arrows point away from each 
vertex. This set of configurations is a subset of the 
diagrams generated by (2.9). The number of con
figurations in the ice problem can be written 

w = y-.\" Tr II (n,.n; +n;'o,). (2.17) 
Illl 

The residual entropy has been evaluated exactly by 
LiebY 

C. The Transfer Matrix 

The 2-particle transfer matrix is given by 

v;, ~ exp ( - :~) ~ [~ f3 f3] 
rx f3 
fJ rx 

= (rx - fJ)1 + 3fJT. (2.18) 

The indices i and j represent the states A, B, and C. 
The last relation defines a 3 X 3 matrix 3 T, all of 
whose entries are unity. The eigenvalues of Vii are 
rx + 2{J and rx - {J, the last being degenerate. Thus the 
partition function of an n X I lattice is Zn.l = 
(rx + 2{3)" + 2(a - {3)". 

The fact that T is a projection operator enables us 
to write Vii in exponential form 

Vij = (rx - fJ) exp (3H*T) , (2.19) 
with 

e3ll ' = (rx + 2{3)/(rx - {3) = u/x. (2.20) 

Now imagine that an n X (m - 1) lattice is extended 
by adding a new column of atoms. The transfer 
matrix representing the interaction along the rows 
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between the last two columns is 

V{(H*) = (IX - fWexp (3H* ~1 Tr)' (2.21) 

where the index r refers to the row number. We now 
turn on the interaction of the atoms in the last 
column. The transfer matrix corresponding to this 
interaction is 

(2.22) 

where 3HkT = 1:1 - 1:0 , The partition function of an 
n X m lattice is now 

Zn,,/IX, (J) = Tr (V~VDm 

= [,8(1X - ,8W'" Tr (ellA'ell"B'rn, (2.23) 
where 

n n 

A' = 3 I Pr • Pr+1 , 8 ' = 3 I Tr · (2.24) 
,'=1 r=l 

Both Tr and Pr • Pr +1 are projection operators of 
the same rank. One suspects that there is an algebraic 
transformation, in analogy with the 2-component 
Ising model, such that Tr ->- Pr • Pr+1 ->- Tr+l ->- •••• 

If this is true, then the maximum eigenvalue of 
exp (HA') exp (H*B') is symmetric in Hand H*. If 
again a unique critical point exists, it would occur 
when H = H*, which is equivalent to {JIIX = (IX - ,8)1 
(IX + 2,8). We shall show that there exists a subspace 
in which all the eigenvalues of the above operator are 
symmetric in Hand H*. 

Consider the matrix 

M ~ (~ ~ D. (2.25) 

and define Mr in the usual direct product fashion 

Mr = I x I x ... M x I x ... , (2.26) 

where M occupies the rth position and the I are unit 
matrices of order 3 X 3. We can then write 

(2.27) 

and, in place of (2.24), introduce the operators 

A = I 12r12:+1 + 12:12r+l, B = IM. + M: 
• • 

(2.28) 
and 

V2(H) = exp(HA), V1(H*) = exp(H*B). (2.29) 

Apart from a multiplicative constant, the transfer 
matrix is now V2 VI' 

The matrices M and 12 satisfy the relations 

M12 = w12M, M12+ = w212+ M (2.30) 

and two others obtained by taking Hermitian con
jugates. The group of order 27 generated by M and 12 
under multiplication consists of all matrices of the 
form wlMmo.n, 0 ~ t, m, n ~ 2. Ifwe consider instead 
the algebra generated by the products, there are 18 
linearly independent elements over the reals or nine 
linearly independent elements over the complexes. We 
have then a complete matrix algebra. 

We now define the following 3n X 3/1 representa
tion: 

Then 

7Tl = 12 X I X I X ••• , 

7T2 = M+ X 0. X I X .•. , 

7Ta = M+ X M+ X 0. x ... , 

Ql = o.+M X I x I X •.. , 

Q2 = M X o.+M X I X ... , 

Qa = M X M X o.+M X "', 

U=MxMxMx .. ·. 

(2.31) 

(2.32) 

Q.7Tr+1 = 0.:0.,'+1' 1 ~ r ~ n, (2.33) 

7TIQ n U
2 = o.l12!· 

The algebra of the 7T, Q matrices is discussed in 
Appendix B. 

The matrices A and B can now be written 

n-l 

A = I (Qr 7Tr+ 1 + 7T:+lQn + 7TIQnu2 + Q!7TtU, 
.=1 

n 

B = I 7TrQ. + Q:7T:. 
.=1 

Now introduce three projection operators 

3A1 = I + U + U2, 

3A2 = 1+ W 2U + WU2, 

3Aa = I + wU + W2U2, 

which have the properties 

AiAj = (jijAj , 

Al + Az + As = I. 

(2.34) 

(2.35) 

(2.36) 

Further, if F(U) is a function of U and operators 
that commute with U, then 

AJF(U) = F(J), 

A 2F(U) = F(w!), 

AaF( U) = F( w 2J). 

(2.37) 
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Note that A and B in (2.34) contain only matrices 
which commute with U, and thus we can separate the 
transfer matrix V2 VI into three parts 

V2VI = AIV2 VI + A 2V2 VI + AaV2VI' (2.38) 

which operate in different subspaces. In the awkward 
last factor in A, the U matrix is replaced by I, (I), and 
w2 , respectively. Consider Al V2 VI' The dual trans
formation D may be represented as14 

D:7r1 - QI -7r2 - Q2' .• Qn - (l)27rI U. (2.39) 

Under this transformation, 

Al - AI, A2 ~ A3 , 

(2.40) 

But D is an automorphism15 of a complete matrix 
algebra and is thus equivalent to a similarity trans
formation which preserves eigenvalues, traces, etc. 

For low temperatures the transfer matrix is domi
nated by V2(H) = ellA. The operator A is triply 
degenerate but is completely reduced by the projection 
operators Ai' Eigenvectors corresponding to de
generate eigenvalues appear in different subspaces. 
For high temperatures the result is different. Here the 
dominant factor is VI(H*) = exp H*B. The operator 
B, while similar to AlA, has its maximum eigenvalue 
in the subspace spanned by Al . Thus for low tempera
tures we expect to find three asymptotically degenerate 
maximum eigenvalues while at high temperatures a 
single maximum eigenvalue. It is well known that the 
degeneracy of the maximum eigenvalue of the transfer 
matrix is a necessary condition for long-range order. 

3. FOUR COMPONENT SYSTEM, ASHKIN
TELLER MODEL 

We again consider a 2-dimensional square lattice 
the sites of which are occupied by one of four kinds 
of atoms A, B, C, or D. In the Ashkin-Teller model 
only nearest-neighbor interactions are considered and 
the pair energies are specified as follows: 

AA 
BB 
CC 
DD 

AB 

CD 

AC 

BD 

We also introduce the parameters 

AD 

BC (3.1) 

The two Potts models for q = 4 are special cases of 

this model corresponding to (i) EI = E2 = Ea and (ii) 
EO = - E2, EI = fa = 0, respectively. 

Ashkin and Teller5 demonstrated that a dual 
transformation exists for this model, and located the 
critical temperature. They used a topological argu
ment, which generalized a method first used by On
sager. Betts8 also studied this model from a topological 
point of view and pointed out that it is exactly soluble 
in the case where EO + E2 = EI + Ea which includes the 
Potts vector model. In this case the model factors into 
two independent 2-component Ising models. This was 
also noted by Suzuki.9 We will briefly review the 
topological arguments and also construct the transfer 
matrix for this model. 

The analysis of the 3-component model given in the 
previous section is readily extended to this 4-com
ponent model. However, it is convenient to proceed 
somewhat differently in a way which brings out more 
clearly the relation of this model with the 2-component 
Ising model and which is easily generalized to 2:II_ 
component models. We introduce the following 
matrices: 

(3.3) 

and 

SO) = I x S, S(2) = S x I, S(3) = S X S, 

M(ll = I x C, M(2) = C x I, M(a) = C X C, 

(3.4) 

where I is a 2 x 2 unit matrix. We now introduce the 
usual direct-product representation S;i) and M;il, 
where r refers to a site and i = 1, 2, 3. A factor of the 
partition function is now 

exp (-ErslkT) 

= t(u + XS~l)S~l) + yS;2)S~2) + zS~3)S~a» (3.5) 

with 
20c = u + x + y + z, 2f3 = u - x + y - z, 

2y = 11 + X - Y - Z, 215 = u - x - y + z. (3.6) 

The matrix of this reciprocal relation is (C + S) x 
(C + S), which is easily generalized to 21l1-component 
models. The PF is now 

Z.v(oc, ~. y, 15) 
= 4-N Tr IT (u + XS?)S~l) + yS~2)S~2) + zS~a)S~a» 

nn 

= u2NF(xlu, ylu, zlu). (3.7) 

The function F is a symmetrical function of its 
arguments. If uz = xy, the above expression factors 
into two 2-component Ising models. 
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Equation (3.7) can be analyzed diagrammatically 
as noted by Ashkin and Teller. A set of planar polyg
onal graphs is obtained whose bonds fall into three 
classes {x,y, z}. At any vertex excluding an isolated 
vertex the following situations can occur: x4, y4, z~, 
x2y2, y2z2, Z2X2, X2, y2, Z2, and xyz. Polygonal graphs 
which can be so labeled are referred to by Ashkin and 
Teller as effective patterns. 

Having assumed that f:J. > {3, y, b, Ashkin and Teller 
obtained a low-temperature expansion. The arguments 
are similar to those outlined in the previous section. 
It is found that the PF is given by the following expan
sion: 

2S (fJ)t(y)m(b)" Zs(f:J., (3, y, b) = 4f:J. .L gs(l, 111, n) - - -
Imn f:J. f:J. f:J. 

(3.S) 

where gs(l, m, n) is the number of configurations with 
I AB pairs, m AC pairs, and n AD pairs. G is again a 
symmetric function of its arguments. The dual 
transformation consists in showing that F == G. 
Then the PF of lattices constructed with Boltzmann 
factors f:J., {3, y, band u, x, y, z are eq ual. This has been 
discussed in some detail by Ashkin and Teller. In the 
case where {J = y = b from (3.6), we obtain the 
reciprocal relation 

{J/f:J. = (f:J. - (J)/(f:J. + 3{J), (3.9) 

which leads to a critical temperature determined by 
f:J./{J = 1 + ~4. 

The Transfer Matrix 

Again we start with the 2-particle transfer matrix 

v., ~ (~ ~ ~ ~) 
= f:J. + (3M(l) + yM(2) + bM(3). (3.10) 

This matrix can also be written 2(U1'(O) + X1'(l) + 
Y1'(2) + Z1'(3», which defines the matrices 1'(i), which 
turn out to be projection operators of the form 
2-2(1 ± C) x (I ± C). If we use these operators, it 
becomes simple to write the transfer matrix as 

V;j = A exp (KiM(1) + K:M(2) + K:M(3», (3.11) 

where 

A4 = 24uxyz, e4K1• = tty/xz, 

e4K,· = ux/yz, e4K3• = uz/xy. (3.12) 

Aside from a factor A n the transfer matrix representing 
the interaction along rows between successive columns 

is (using an obvious vector notation) 

V1(K*) = exp (Jl~ KiM:,i») 

= exp (~ K* • Me). (3.13) 

Within a column, the transfer matrix, aside from a 
factor (f:J.{3ybt/4, is 

where 
( ~ '" () ("») V2(K) = exp ;-:; '7 KiS: Sr~l' (3,14) 

e4K3 = f:J.b/{Jy. 

(3.15) 
The PF is then given by 

Zmn = 2nw(f:J.{3ybuxyz)mn/4 Tr [V2(K)Vl(K*)]m. 

(3.16) 

Since the relation between K and K* is also reciprocal, 
the existence of a dual transformation is equivalent to 
the maximum eigenvalue of V2 V1 being a symmetric 
function of K and K*, i.e., AllIax(K, K*) = AllIax(K*, 
K). 

We introduce the following 4" X 4" representation 
which is a generalization of the spinor representation 
introduced by Kaufman4 : 

PI = S(O X I X I· .. , 

P2 = M(l) X S(O X I· .. , 

Ql = -is(l)M(J) X I X I· .. , 

Q2 = -iMO) X SO)MU) X I· .. , 

RI = S(2) X I X I· .. , (3.17) 

R2 = M(2) X S(2) X I ... , 

TI = -is(2)M(2) X I X I· .. , 

T2 = -iM(2) X S(2)M(2) X I· .. , 

Here the I are 4 X 4 unit matrices. The Pi' Qi and 
the R;, T; form spinor algebras in different spaces and 
so commute with each other. Using these operators, 
we can easily show that 

M~!) = iPrQ" M~2) = iRrTr, M~3) = M~I)M~2), 
(3.lSa) 

S
(1)s(1) 'Q P S(2)S(2) 'TR 
r r+l = I r r+l' T r+l = I T 1'+1' 

(3.1Sb) 
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where 
U(I) = M(I) X M(l) X ... , 

U(2) = M(2) X M(2) X .•.• 

> 

The transfer matrices (3.13) and (3.14) can then be 
expressed in terms of the spinors (3.17) and take a 
form analogous to the 2-component Ising model. 
If we write V2 = eA and VI = eB

, then 
n-I 

A = i! (KIQrPr+l + K2TrRr+I + iKaQrPr+IT,.Rr+l) 
r=I 

+ iKIPIQnUI + iK2RITnU2 - KaPIQnRITnUIU2' 

(3.19) 
n 

B = i ! (KtPrQr + K:RrTr + iK:PrQrRrTr)' 
r=I 

We now introduce projection operators 

A±± = HI ± U1)(I ± U2) 

(3.20) 

(3.21) 

and consider A++ V2 VI = Vr VI' These projection 
operators split the space into even and odd parts and 
eliminate the awkward end factors in (3.19). The dual 

4. GENERALIZATIONS 

A. The q-Component Potts Model 

The projection operators p:i ) readily generalize to 
the case of q components. Similarly the matrice~ M 
and Q become, with w = exp (27T'i/q), 

n= 

M= 

OJ 

010 

o 0 

o 0 

(4.1) 

transformation can be represented by Clearly 

D{PI ~ QI ~P2'" Qn ~ -Pl. 
RI ~ TI ~ R2 ... Tn ~ - R1 

(3.22) 

Under this transformation, we have 

A++V2(K)VI(K*) ~ A++VI(K)V2(K*). 

Since the algebra generated by P, Q, R, and T is a 
complete matrix algebra, the automorphism D can 
be represented by a similarity transformationI5 pre
serving eigenvalues, etc. Thus the eigenvalues of 
vt+VI are symmetric in K and K*. They are also real 
since VIV2 VI is Hermitian and positive definite. 

The matrices A and B contain quartic terms unless 
Ks = K: = O. These conditions imply the equations 

ocb = (Jy, uz = xy, "0 + "s = "I + "2' (3.23) 

The transfer matrix then factors into two commuting 
operators which can be diagonalized separately. 
[The model is symmetrical in "1' "2, and "3' and the 
same factorization results when the relations (3.23) 
are permuted.] 

In the special case "0 < "I = "2 = "s, the matrix 
3 

A =!! S;i)S;~I 
r i=l 

is quadruply degenerate, and at low temperatures one 
expects the largest eigenvalue to be quadrup,ly 
degenerate in the thermodynamic limit. The projection 
operators A±± again split this degeneracy. At high 
temperatures the largest eigenvalue is expected to be 
nondegenerate and to occur in the space of A++. 

(4.2) 

If we use the methods of Sec. 2, it is easy to show that 
the transfer matrix can again be written as the product 
of V2(H) = exp HA and V1(H*) = exp H*B, with 

a-I 

A = L Ln~n~+f, qHKT = "I - "0' 
r k=I 

a-I 

B = L !M~, exp qH* = roc + (q - 1}{J]/(oc - (J). 
r k=I 

(4.3) 
The reciprocal relations are replaced by 

q!u = oc + (q - 1){J, qlx = oc - {J, (4.4) 

and the transition temperature is determined by 
H = H* or {J/oc = u/x. This equation has the solution 

exp [("1 - "o)/kTc] = I + q! (4.5) 

which was first given by Potts.6 It is interesting to note 
that as q ~ 00, then Tc -- O. The energy may also l?e 
evaluated at Tc ' and this is carried out in Appendix C. 

The algebraic representation defined by Eqs. (2.31) 
and (2.32) may be used as written by interpreting M 
and n as the q x q matrices in (4.1). If we consider 
only the subspace spanned by the projection operator 

a 
Al = q-I ! Uk, 

k=1 

then the operator A 1V2(H)VI(H*) is symmetric in H 
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and H*. The dual transformation in this case is given 

by 
D:TTI -+ Ql -+ TT2' .. -+ Qn -+ W-1TT1U-2, (4.6a) 

D:U-+U-l, D:A1-+A 1 • (4.6b) 

The last factor in (4.6a) is just sufficient to preserve 
the commutation relations [TTn' Qn] and [Qn' TTd 
under the transformation. Thus D is an automorphism 
and A1 V2(H)VI(H*) is similar to A1 VI(H)V2(H*). 

B. The Potts Vector Model 

The states here are represented by q 2-dimensional 
vectors e(Z) which make angles (Jl = 2TTI/q, 1= 0, 
I, ... ,q - I, with the positive x axis. The energy of 
nearest neighbors in states I and m is given by 

E = -JeO) • e(m) 
rs r s· (4.7) 

This can be written as an operator 

E J ~ p(z)p(m) (J 
rs = - £., r s cos l-m' (4.8) 

l.m 

which simplifies to 

Ers = -V(QrQ;- + Q~Qs)' (4.9) 

The PF takes the simple form, with 2HKT = J, 

Z.". = Tr II exp [H(QrQ; + Q~Q.)]. (4.10) 
un 

Similarly the factor V2 of the transfer matrix is 

V2 = exp (H ~(QrQ~+1 + Q~Q1+1»)' (4.11) 

while the other factor may be shown to be 

(4.12) 

There is now no simple symmetry relation between 
V2 and VI except for q = 2, 3, 4. 

C. The 2,lI Ashkin-Teller Model 

The Ashkin-Teller model can be generalized in the 
case where the number of components at each site is 
2M. This possibility was mentioned by Betts,S and we 
will only discuss it briefly. We can define 2(2M 

- 1) 
direct product matrices of order 2M in direct analogy 
with Eq. (3.4). The interaction energies between atoms 
on nearest-neighbor sites are chosen so that the 2-
particle transfer matrix can be expanded in terms of the 
direct product matrices as in (3.5) and (3.10). It is also 
clear that the spinor algebras introduced in (3.17) can 
be generalized and lead to M sets of commuting 
spinors in this case. The dual transformation exists for 
all these models and takes the form given in (3.22). 

+ 
+ 

-
-

FIG. 3. Deformation of vertices of valence four. 
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APPENDIX A 

It is possible to deform the directed polygonal 
planar graphs to directed planar graphs. We simply 
suppress all vertices with only two edges. Now 
consider as one continuous directed edge a path which 
previously passed only through such suppressed 
vertices. We are left with a graph whose vertices 
contain only three or four edges. The number of 
edges at a vertex is called the vertex valence number v. 
In our case v = 3 or 4. The vertices with v = 4 fall 
into two types represented in Fig. 3. Deform these 
two types as shown in Fig. 3. 

We have now obtained a regular graph all of whose 
vertex numbers are equal; in this case v = 3. In a 
circuit enclosing only one face, an even number of 
edges are traversed. This is true because each time we 
pass through a vertex with v = 3, the direction is 
reversed. Since we must return to the original direc
tion, we must traverse an even number of edges. The 
number of edges surrounding a given face is referred 
to as the face valence number. Orel6 gives the following 
statement essentially as a corollary to a theorem: A 
regular graph of valence three is face colorable in 
three colors if and only if all faces have even valence. 
Thus all deformed graphs are three colorable. This 
clearly implies that all admissible diagrams are also 
three colorable. Any three coloration will yield either 
the directed graph or the graph with all directions 
reversed. 

APPENDIX B 

The algebra defined by Eqs. (2.31) and (2.32) has 
some interesting properties. All elements are units 
with vanishing trace. The multiplicative group defined 
by all products contains 3· 3n x 3n traceless ele
ments, whose cubes are the identity. Since 1 + w + 
w 2 = 0, the algebra contains 2· 3n x 3n linearly 
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independent elements over the reals or 3 n X 3 n 

elements over the complexes. It is thus a basis for all 
3n x 3n matrices, in other words a complete matrix 
algebra. While this algebra satisfies no simple com
mutators or anticommutators, it satisfies the following 
relations: 

Qk7TZ = W7T zQk' k ~ I, 

7Tk7TZ = W-l7TZ7Tk' k > I, 
Qk7T1 = W-

1
7T1Qk' k < I, 

QkQI = W-1QZQk, k > I. 
Some of the triple terms such as 7T17T27Ta equal7Ta7T27Tl' 

but this is not a general property of the algebra. 
Thus, this algebra does not serve as a representation 
for parastatistics. 

If we write the series 7Tl' Ql' 7T2, Q2, 7Ta, Qa, ... , 
7T n' Qn' then, excluding the end factors, each entry 
has the same commutation relations with its neigh
bors; i.e., 7T1Ql = W-1Ql7Tl , Ql7T2 = W-17T2Ql .... 
This is essentially the mathematical structure behind 
the fact that the dual transformation is an auto
morphism. If we define a transformation partially by 
D: 7Tl --+ Ql --+ 7T2 --+ ••• 7T n --+ Q .. --+ <I>(Q .. ) such that 
<I>(U) = UK and D: AlA --+ B --+ AlA, then <I>(U) = 
U-l and <I>(Qn) = W-l7Tl U-2 complete the auto
morphism and preserve the commutation relations of 
Q .. with 7Tl and 7T ... The transformation given above 
serves the general q-component model. In the 3-
component system, we have w-l = w2 and U-2 = V. 

APPENDIX C 

The critical energy Ee can be determined by assum
ing that the free energy is a differentiable function. 

JOURNAL OF MATHEMATICAL PHYSICS 

This implies that f is differentiable with respect to its 
argument. With kTO = 1, we have at high- and low
temperatures, respectively, 

E = -2 ~ 10 u _ f'(x/u) o(x/u) 
00 g f(x/u) 00 ' 

E = -2 0 log ex _ r({3/ex) o({3/ex) 
00 f({3/ex) 00 ' 

The unknown function f' /f can be eliminated at the 
critical point to obtain 

The derivatives taken with respect to 0 at the critical 
temperature satisfy (x/u)~ = - ({3/r:x.)~, so that 

Ee = Eo + El - (El - EO)/.jq· 
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The linearized Boltzmann equation is considered for steady-state oscillations. Denoting molecular 
collision frequency by I'(~) and writing I' = O(~ac) for ~ large, we show that solutions for x - 00 behave 
like exp (-x"/ls-ac').This shows that the continuous spectra dominates hydrodynamics for all except the 
rigid sphere or radial cutoff case (0'. = 1). 

1. INTRODUCTION 

It is a well-accepted fact and certainly 1:10 surprise 
that the behavior of a gas near a wall is described by 
kinetic theory equations and not simply by fluid me
chanical ones (at least under most conditions). Several 
investigationsl- 3 have indicated that flow far from a 

boundary is also a nonhydrodynamical regime. We 
are speaking, in particular, of the O(exp (_X2/3» 
falloff at large distances predicted in sound propaga
tion2 and shock structurel for constant molecular 
collision frequencies and a somewhat more compli
cated but still nonhydrodynamical falloff for velocity 



                                                                                                                                    

450 L. MITTAG AND M. J. STEPHEN 
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dependent collision frequencies recently shown in 
Refs. 3 and 4. 

The purpose of this investigation is to demonstrate 
the effect of intermolecular colIision frequency on 
solutions of the linearized Boltzmann equation. We 
will carry out our calculations in connection with a 
problem in steady-state oscillations. However, the 
results we obtain should be equally applicable to 
other problems and to transport equations more 
general than the Boltzmann equation. In view of the 
somewhat heavy calculations, we give below an out
line of our results and discuss them here rather than in 
the next section. 

A first result is that the collision frequency v(~) for 
high speed molecules has a direct effect on the nature 
of the solution. In fact, writing 

V(~) = O(e) (1.1 ) 

for ~ large (for noncharged particles 0 ~ IX ~ 1), we 
find, for example, that the density p is given by 

2/13-a l 
p = O(e-X 

). (1.2) 

This result has already been shown in an approximate 
method for certain kinetic models.3 •4 Our demonstra
tion is given within the framework of the linearized 
Boltzmann equation itself. 

For oscillations of frequency w, hydrodynamics 
predicts that the falloff of oscillations at large distances 
is given by 

p = O(e-k(wlX) (1.3) 

(where Re k > 0, w =;t. 0). From this we see that 
hydrodynamic theory at large distances is small com
pared to the kinetic theory prediction except when 
IX = 1. Hence the region at infinity is a kinetic theory 
boundary layer. 

The region near a wall is intuitively, at least, a 
free-flow regime; however, the region at infinity, 
although containing particles not having undergone 
collisions, is not a free-flow regime. We determine 
(1.2) by a stationary exponent calculation of an inte
gral. Examination of this shows that, for a fixed but 
large value of x, the main contribution in the calcu
lation comes from particles whose speed is ~ = 
0(X1j(3-a l). Now the free path of a particle moving 
with a speed ~ is ~/v; therefore, for fast particles, the 
free path A = O(~l-a) by (1.1). Hence the main con
tribution to the evaluation (1.2) comes from particles 
having a free path 

A = O(x(l-al/(3-al). 

Therefore, these particles for all values of IX have 
undergone many collisions. 

This raises an interesting point with regard to the 
Chapman-Enskog procedure. There, it will be re
called, it is assumed that spatial derivatives are slowly 
varying with respect to the mean free path. It is, of 
course, clear that the procedure is not uniform in the 
velocity since the combination ;. a/ox occurs. Our 
present investigation therefore demonstrates that, for 
IX < 1 and for certain regimes, ; in this combination 
cannot be regarded as small. 

As a next point, we take up the question of where 
classical hydrodynamics is valid. For low-frequency 
phenomena, k(w) in (1.3) is 0(0)2). Comparing this 
with (1.2), we can say that in the low-frequency limit 
at least hydrodynamic theory is valid for 

x « w-2[(3-al/(1-al]. 

Therefore, only for IX = 1 (effectively rigid sphere 
molecules) does the hydrodynamic region extend to 
infinity. 

2. STEADY-STATE OSCILLATIONS 

The problem of steady-state oscillations in a half
space has been discussed at length; the equation 
governing this is 

(V(~) + iw + ~1 oOJ g(x, ;) = Kg, (2.1) 

where w is the frequency of oscillation and the 
linearized Boltzmann operator has been split into the 
difference K - V, v being the molecular collision fre
quency. A discussion of the spectra of the operator 
(iw + ~l(O/OX) + 'II - K) has been given in Ref. 5. 
In general, the spectra consists of point spectra and 
a two-dimensional region of continuous spectra. For 
(2.1), as is well known, only the outgoing distribution 
g (~1 > 0) is in any way specified at x = O. We will, 
however, not really consider any specific boundary
value problem. Formally we will regard the solution 
as known and then, from this, seek properties of it. 

Regarding the right-hand side of (2.1) as known, we 
formally integrate and find 

g(x,;) = H(~l)gO(;)exp (-('1';1 iW)X) 

50
"'1 + H(~l) - (Kg)(s, ;) 

o ~l 

(
-(V + iw)(x - S)) d x exp s 

~1 

1001 
- H( -~l) - (Kg)(s, ;) 

'" ~1 

(
-(V + iw)(x - S)) d x exp s, 

~l 
(2.2) 
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where H is the Heaviside function and goO;) = 
g (x = 0, ~l > 0). Then, combining the last two terms 
of (2.2), we obtain 

g(x, ;) = H(~l)go(;) exp (-(v ~ i(J)X) 

+ (H(~l) f + H( -~l) i~) 1;11 (Kg)(s, ~) 

(
-(v + i01) Ix - SI) d X exp S 

I~ll 

Thus, we are left with 

(J, Bgo)(x) "-' _1_ (c>O ego(;, 1) 
(21T)! Jo x[v(~) + i01] 

( 
e [vC;) + i01]X) x exp - - - d~. 
2 ~ 

(2.5) 
The stationary points of the exponential function 

j(;; x) = -t;2 - [va) + i01]x/~ 

== (Bgo)(x,~) + (WKg)(x, ~), (2.3) are given by 

where Band W represent the linear operators defined 
through (2.3). Note that (2.3) reduces the problem to 
one in integral equations; we will, however, not 
pursue this line of investigation here. We now solve 
for a moment of g, say the density 

p(x) = (1, g)(x) 

== L: I . g(x, ~)(21T)-:t exp (-!e) d~, 
so that 

p(x) = (1, Bgo)(x) + (1, WKg)(x). (2.4) 

It is known that the term (I, WKg)(x) contributes 
point spectra as well as continuous spectra to the 
solution. (I, Bgo)(x) contributes only continuous 
spectra. Here we examine the latter effect on p(x) as x 
becomes large. 

As will be clear, our discussion will apply to both 
normal and transverse oscillations, but for the sake of 
simplicity we assume purely normal oscillations in 
which case g = g(~, ;1). Then we write the integral as 

1 loc,i l 

2 (I, Bgo)(x) = -! ~ go(~, fl) 
(21T) 0 0 

( e [v(~) + i01]X) de d 
X exp - - - ~ fl, 

2 ;fl 

where fl is the cosine of the polar angle and; = 1;1. 
Considering first the fl integration, it is clear that the 
exponential term involving fl is a maximum when 
fl = I, since c = [v(~) + ;01]/ ~ is such that 

larg cl < i1T - b, b > o. 
Under the transformation fl = 1/(1 + p) this part of 
the calculation is reduced to the Laplace integral 

e-
XC 1'10 e-XCPgo (~, 1 ~ p) (l ~ p)2 . 

Watson's lemma applies, giving the It integral asymp
totically equal to (x --->- 00) 

e-XCgo(~' l)[(xc)-l + O(X-2C-2)]. 

" v'(~)o v(;)o + iw 
-.; - -- x + x = ° (2.6) 

o ~o eo 
and the second derivative is 

v"(;o) 
-fH(~O; x) = 3 + --x. (2.7) 

~o 

Take ~ to be a complex variable and expand go(~' I) 
about the solution ;0 of (2.6); then, with (2.7) to 
lowest order,the method of steepest descent gives 

ef(;Q;x) go(~o' l)~! 
(I,Bgo)"-' .! .. (2.8) 

[-1<;(;0' x)] x[v(;o) + /01] 

To make (2.8) specific, we suppose that, for ~ large, 
v has the asymptotic expansion 

v(;) = k;a + 'Y. V + O(~-P), 
with 0 S rJ. S I and k, V, and f3 positive constants. 
The case IX = I corresponds to rigid sphere molecules 
or radial cutoff. IX = ° gives a constant collision fre
quency as in the Krook model equation. Then the 
solution of (2.6) is, for x large, given by 

~o = [(k + i01)x]l + O(X(I-P)/3), IX = 0, 

= [(1 - lX)kx]I/(3-ct) + O(xO- ct )J(3-ct», 0 < (1. < I, 

= [(V + iw)x]l + O(XO- P)/3), (1. = 1. 

(2.9) 
Then for (2.7) we have 

f:;Mo; x) = -3 + O(X-PI3), (X = 0, 

= -3 + IX + O(X-a/ (3-,l), 0< IX < 1, 

= -3 + O(X-PI3), IX = 1 (2.10) 
and 

f(~o; x) 

= -t[(k + i01)x]i + O(X(2-P)/3), IX = 0, 
= -!(3 - IX)(I _ 1X)(a-0I(3-a)(kx)2/(3-a) 

+ O(X(2-.)!(3-.», 0 < rJ. < 1, 

(1.=1. 

(2.11) 
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f(~o; x) can be written compactly as 

f(~o; x) = -[kx + iwxOao]2!(3-a) 

x H3 - oc)(l - oc)(a-l)!(3-a) + o(x2!(3-a»), 

o ~'oc ~ 1, (2.12) 

where the order term is more precisely given by (2.11). 
It can be shown by using (2.9)-(2.12) that paths in the 
complex plane can always be found such that the 
method of steepest descent is valid, and that (2.8) is 

ili~~~nM • 

(I, Bgo)""" goao,l) [1- oc + 0«1 (V+ iW)3] 
[3 - (J. + oaIl! kxk 

x exp {[kx + iwxo",o)2!(3-a) 

X to - oc)(1 - ocya-l)!(3-~) + o(x2!(3-a»)}. 

(2.13) 
where 0aP is the Kronecker delta. 

JOURNAL OF MATHEMATICAL PHYSICS 

Thus we observe that (l, Bgo)(x) behaves essentially 
as exp (_ax2!(3-a»), a > 0, for x large. This result, 
for oc = 0, was first obtained in Refs. 1 and 2 using 
the Krook equation. For IX > 0 the result was found 
in Refs. 3 and 4 by using an approximate method 
for kinetic models. Here we have demonstrated that 
this result holds in general for the linearized Boltzmann 
equation. 
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The stochastic theory of quantum mechanics is further developed to include the problem of extended 
rigid particles, thus allowing the introduction of spin. It is demonstrated that the stochastic equations for 
the system's center of mass give rise to a generalized Schrodinger equation for integral or half-integral 
spin; in the particular case of spin t, upon elimination of the internal variables, Pauli's equation is 
obtained. A formal simplified relativistic extension of the theory is worked out and shown to lead to 
Dirac's equation in the case of spin! and for a gyromagnetic ratio equal to 2; in the case of arbitrary 
spin, the theory gives an equation of the Feynman-Gell-Mann type. 

I. INTRODUCTION 

In a series of papersl we have proposed an elemen
tary theory for a classical particle subject to a random 
interaction with its surroundings. In (I) it was shown 
that such a stochastic theory contains as a particularly 
simple case the quantum mechanics of a nonrelativ
istic spinless particle under the action of an external 
potential. In (II), (III), and (IV) we demonstrated 
that the theory applies also to more general situations, 
as, for example, the electromagnetic case, and to a 
system of interacting particles; in particular, the two
body problem was studied more closely. The aim of 
this paper is to extend the theory to particles with 
spin. With this purpose and following the line of 
thought presented in the aforementioned papers, we 
shall consider our stochastic particle as a spinning 
rigid body. We are aware of the fact that such a model 

is not fashionable, due to its inherent difficulties,2 and 
that more abstract and formal procedures, which 
assign no classical analog to the spin variable, are 
being preferred. Nevertheless, the introduction of 
spinning rigid bodies has given lately a series of inter
esting results, both in the study of electron spin in 
particular3 •4 and in connection with some attempts to 
understand the nature of the quantum numbers of 
elementary particles; two representative examples of 
such attempts are given in Refs. 5 and 6. 

To start with, we consider a system of stochastic 
particles and apply to them the methods previously 
developed. Upon introduction of the constraints de
fining a rotating rigid body, the theory gives a Schro
dinger equation, except for some additional terms due 
both to the particle's extension and to its spin. The 
amplitude 1p is now a function of the center-of-mass 
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(c.m.) coordinates and of the internal degrees of free
dom, e.g., the Euler angles. From usual considerations 
it follows that the spin is quantized and may take 
integral or half-integral values. When separating c.m. 
from rotational coordinates, we obtain, for spin t, 
just Pauli's equation-ignoring some minor correc
tions due to the particle's finite radius, a point which 
will be briefly commented on in the text. 

In the last part of the paper, we make a preliminary 
investigation on the possibility of extending the theory 
to the relativistic case. This may be achieved by first 
constructing the stochastic theory of a relativistic 
point particle and then trying to introduce the addi
tional internal degrees of freedom. The first part may 
be accomplished following the procedure applied to 
the nonrelativistic case, the results being, as one may 
expect in advance, the covariant generalization of the 
nonrelativistic equations,' a result which we take for 
granted in this paper. The second step is much more 
difficult because classical relativistic theories of ex
tended bodies are still under discussion,5.6.s and hence 
it is not a simple job to select one among the many 
(occasionally contradictory or at least nonequivalent) 
existing theories. Here we get around this difficulty by 
the simple and common expedientS of writing the 
formal covariant generalization of the nonrelativistic 
spin terms previously obtained. The relativistic sto
chastic equations constructed in this form lead us, 
upon integration, to a "wave equation" of the 
Feynman-Gell-Mann type,9 but written in terms of 
relativistic internal variables. To obtain more familiar 
results and at the same time maintain things as simple 
as possible, we go over to the case of spin t, making 
some approximations which allow us to use the non
relativistic theory; known procedures lead us then to 
the corresponding first-order equation, which turns 
out to be in this particular case just Dirac's equation 
if the gyromagnetic ratio is taken equal to two. 

II. STOCHASTIC EQUATIONS FOR THE 
SPINNING RIGID BODY 

Consider a system of particles subject both to a 
stochastic interaction with the surrounding medium 
and to "external" interactions, i.e., interactions be
tween themselves and with given external fields. 
According to the theory developed in (I), we may 
write for particle IX (Greek indices are used to label 
the particles) 

~cm~v~ - ~sm~u~ = fJ+)~, 
~8mava + j)c mlZua = f~-)a; (1) 

m'" is the mass of the particle with systematic and 
stochastic velocities va and u'x, respectively; f~±)a stands 

for the external force acting on particle 0(, the plus or 
minus sign referring to its behavior under time
reversal [see (III»). 

From (I) and (IV) we also know that 

j),.ra = va, 

!D.riZ = u2
• (2) 

To second order, the operators ~)c and ~D., may be 
written schematically as 

o 0 
'Ilc = - + 2 Vi -ot i OX; 

o a a 
~) = 2 II - + D 2 - - (3) .' ; , oX

i 
; oX

i 
oX i ' 

the summation extending over all degrees of freedom.lo 
In order to constrain our system of particles to 

define a rotating rigid body, we write r a in the form 

r a = r + p", 

where r is the c.m. coordinate 

and 

(4a) 

(4b) 

(4c) 

m being the total mass of the system. Hence pIX, the 
position vector of particle 0( relative to the c.m., is a 
rotating vector of constant magnitude. From Eqs. 
(4a) and (4b) it follows trivially that 

(4d) 

Fixing now a system of axes in the body, we see that 
it will rotate with given angular velocity n with respect 
to a system of coordinates fixed in space. Hence, the 
total velocity of particle 0( may be written as 

(Sa) 
where, as usual, 

Separating systematic and stochastic components, we 

get 
v~ = v + w x p~ = 1)cr~ , 
ua = U + Y) X pl1 = 1),rl1, (5b) 

with 

and 

n = w + Y). (5c) 

Clearly, v and u stand for the systematic and stochastic 
velocities of the c.m., whereas wand Y) represent the 
systematic and stochastic components of the angular 
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velocity of rotation, respectively. From Eqs. (4a) and 
(5b) we have that 

v + w X pa = :Ocr + j)epa, 

U + Y} x pIX = 'J)"r + 'J)sp". 

For pOl = 0, this set of equations reduces to 

v = 'J)cr 

u = ~D,r. (6a) 

In particular, the position of the c.m. is defined just by 
p" = 0; hence, Eqs. (6a) describe the motion of the 
c.m. Introducing Eqs. (6a) into the preceding set of 
equations, we obtain for the relative motion 

'J)eP" = w X p", 

'J)sP" = V} x pIX. (6b) 

Clearly, in the Newtonian limit (D -+ 0, U -+ 0) Eqs. 
(6) reduce correctly to the classical equations, i.e., 
i: = v, p" = w x p". 

The total momentum of the system is 

P = L m"e" = me = mv + mu (7) 

and the total angular momentum of the body may be 
written as 

j = L ra x pIX = r x p + IT. n = I + s, (8) 

1 being the orbital angular momentum and s the spin; 
IT stands for the inertia tensor with components 

ITij = L m"[( P")2Dij - p~p~]. 
" 

For simplicity, we shall consider a spherically sym
metric, not necessarily homogeneous, mass distri
bution. Hence, we write 

(9a) 
with 

I = ima~. (9b) 

The parameter a2 is proportional to the radius of the 
mass distribution, the constant of proportionality 
depending on the particular form of such distribution; 
for any "reasonable" law we may expect its value to be 
of order unity. 

We see from Eq. (8) that both the orbital and spin 
angular momenta have systematic and stochastic 
components, i.e., 

IT = [e + IT. = mr x v + mr x u (lOa) 
and 

Since the degrees of freedom have been reduced to 
six, Eqs. (3) take the form 

~) = £ + v • V + w • V, 
e ot " 

~j)s = U • V + DV2 + V} • V g + D<VL (t 1) 

where V represents derivation with respect to the c.m. 
coordinates and V s with respect to the internal vari
ables and may be written, for example, in terms of 
Euler anglesll ; further, 

D = Ii/2m, 

Ds = 1i/2I. 

(12a) 

(l2b) 

The first of these relations has been obtained in several 
papers, in particular in (I). The second relation can be 
obtained, for example, by calculating the value of the 
auxiliary quantity 

il = Lf m"E{DP~{)PZ} (13) 
/r." 2ilt 

asilt -+ 0; E{ }denotes mean value as defined in (I), 
and the prime is being used to indicate that the rigid
body constraints must be taken into account when 
performing the summation. The calculation will be 
carried out in two different ways: If we introduce the 
rigid-body constraints by writing 

op~ = L €ijkOlXiPj, 
i,i 

where the O(J.i represent the angular deviations occur
ring in ilt, we obtain with the aid of Eq. (9a) the value 
il = 3IDt;. Here we have written 

lim E -'-' = D~Oij. {
OIXOIX "} 

I\t-O 2ilt 

The diagonal character of this matrix is self-evident, 
since ooci and Docj , i ~ j, are stochastically independent; 
furthermore, from isotropy considerations it follows 
that the diagonal elements are equal. On the other 
hand, since opa is small, we may treat it as the trans
lation of particle IX as viewed from the c.m.; in this 
case the constraints are taken into account by con
sidering only one particle along the k axis, i.e., by 
reducing the number of internal degrees of freedom to 
three. Hence, since all three directions are equivalent, 
we obtain l il = Lk mali/2ma = 31i/2. Equation (l2b) 
is an immediate consequence of these two results. 

Note that the operators j)e and j)" commute with 
La' a property that will be frequently used in what 
follows. 

S = Se + S8 = In (lOb) The translational as well as the rotational equations 
with 

Se = Iw, Ss = IV}. 

of motion may be established by following a pro
cedure similar to that used in the classical treatment of 
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the rigid body. Addition of Eqs. (1) over all particles 
leads to the translational equations 

1>cmv - 1>smu = f~+), 

where 
~"mv + ~cmu = f~-), (14) 

(15) 

represents the external forces acting on the c.m. The 
rotational equations of motion, which are obtained by 
taking the cross product of each of Eqs. (1) with r2 
and summing over all particles, are omitted since their 
derivation is rather lengthy and they are not relevant 
to our present purposes. 

III. THE ELECTROMAGNETIC CASE 

I n this section we calculate fJ ±) for the electro
magnetic case. To achieve this, we write for the force 
acting on particle oc, to second order, 

f~+)a = ea[E" + O/c)v" x H"], 

f~-)a = e"[(Dlc)v x H" + (l/c)"a x HaJ, (16) 

where the gauge V. A = 0 has been used. Here E" 
and H" represent the external electric and magnetic 
field intensities at the point r" occupied by particle oc. 
Equations (16) applied to a single charged particle 
lead us to Schrodinger's equation, as has been shown 
in (III), but it seems desirable to justify them at this 
point. Possibly the simplest way to derive them goes 
as follows. In (1) we have seen that, to go over from 
classical mechanics to the stochastic theory, the 
substitution 

v-->- c = V + u, 

!!..-->-f) =f) +']) 
dt c S 

must be made. Applying this recipe to the classical 
formula 

e dA e e n,l. 
fo = - - - + - (v. V)A + - v x (V x A) - ev'l-', 

c dt e c 

we obtain 

fo = fJ+) + fci-) = -(eJc)'JJA + (eJc)(v + u)· VA 

+ (elc)(v + u) x (V x A) - eVcp. 

Hence, separating terms with different behavior under 
time reversal, 

Equations (16) are obtained by developing 'Dc and ~])s 
in Eq. (16') to second order, with 

1 aA 
E = - - - - Vcp and H = V x A. 

c at 
For the calculation of fo:c) we expand EO: and H" in 

a Taylor series about the c.m. and, to take into ac
count possible effects due to the distribution of 
electricity in the volume occupied by the extended 
particle, we retain terms up to second order. Clearly, 
in analogy with Eqs. (4c) and (4d), we may write 

.2 e" = e, (17a) 

( 17b) 

However, since the charge distribution does not neces
sarily coincide with the mass distribution, we introduce 
the quantity 

ga = g(pa) = (eaje)(m"jm)-l (18a) 
and write 

Hence, defining an average g by 

we may write for a spherically symmetric charge dis
tribution, taking into account Eq. (9), 

(19) 

Using Eq. (16) to calculate fJ ±), we obtain therefore 

f~+) = erE + (l/e)v x H] + (ge/2mc)[v(sc • H) 

- (H . v)sc - H x (v x sc)] 

(20a) 

and 

f~-) = e[(Dlc)v x H + {l/e)u X H] 

+ (geI2mc)[V(ss . H) 

- (H· V)s. - H x (v x s.)] 

+ igea~[(Dle)v2(v x H) + (lIe)" x v2HJ. 

(20b) 

The force fJ+) is classical, i.e., in the Newtonian limit 
it is given by the same Eq. (20a); on the other hand, 
fJ-) goes to zero in the Newtonian limit, which indi-

f~+) = (-ele)f)cA + (ele)(v· V)A 

+ (elc)v x (V x A) - evcp, 

f~-) = (-ele)'DsA + (ele)(u • v)A 

+ (ele)" x (V x A). (16') cates its purely stochastic origin. 
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IV. THE SCHRODINGER EQUATION FOR 
ARBITRARY SPIN 

As was shown in (I) and (III) for the case of spinless 
point particles, the first integral of the system of Eqs. 
(14) leads to Schrodinger's equation. Essentially the 
same procedure can be applied to the spinning ex~ 
tended particle. For this purpose, it is convenient to 
first rewrite Eqs. (14) in a more simple and sugges
tive form, by expressing them in terms of the following 
complex quantities12 : 

VQ = v - iu, 

SQ=Sc- is., 

fQ = f~i) - if~-), 
(21) 

~q = ~c - i~ •. 

Using Eqs. (21) and their complex conjugates, we may 
write Eqs. (14) in the following form: 

'J)qmVq = f q , 

'J):mv: = f:. 
(22a) 

(22b) 

Owing to the symmetry of these equations, we may 
work with only one of them; we choose the first one 
and consider it a complex form of Newton's second 
law for stochastic particles. 

In the electromagnetic case we have, according to 
Eqs. (20), 

f = f{l) + f(2) + f(3) (23a) q q q q , 

with 

f~l) = erE - (iD/c}'V x H + (1/c)Vq x Hj, (23b) 

f!2) = (gej2mc)[Y(sq • H) - (H. Y)Sq 

- H x (Y x Sq)], (23c) 

f~3) = tgea~[y2E - (iDjc}'V x (y2H) 

+ (1/c)vq x y2H]; (23d) 

f!l) represents a kind of complex force acting on the 
c.m.; f~2) is due to the interaction of the spin with the 
magnetic field and, finally, f~3) is a residual force due 
to the structure of the particle. 

In general, Eqs. (22) and (23) together with the 
rotational equations of motion form an extremely 
complicated coupled system; we shall therefore re
strict ourselves in this paper to a simple but relevant 
case, namely, when H is such that sa does not depend 
on the c.m. coordinates and precesses around H. This 
restriction is not essential from the point of view of the 
ideas proposed in the present paper, but represents a 
considerable simplification of the mathematical pro
cess. In this case, f!2) reduces to 

f!2) = (gej2mc)Y(sQ • H), (23e) 

where the projection of So along H has a well-defined 

value, due to the precessional motion. With this 
simplification, we may proceed to the integration of 
Eq. (22a) by following a method similar to that 
suggested in (II), since now the internal variables do 
not appear explicitly in the eq uations of motion for the 
c.m. Hence we assume that there exists a function II' 

such that 

Vq = 2D\w - (ejmc)(A + €y2A), (24) 
with 

€ = iga~. 
Since in the present case the c.m. velocity does not 
depend explicitly on the internal variables, we have 

= Y[ 2mD ~~ + imv~ - imDV ·v. + V + €y2 vJ 

+ ~ [va - iDVj x [H + €y2H] + eE + e€y2E. 
C 

The second equality has been obtained by using Eq. 
(24), the relation (e/c)oA/ot = - y V - eE and a 
couple of vectorial identities. If we introduce this 
result into Eq. (22a) with fa given by Eqs. (23), we get 
the gradient of a function, which yields upon inte
gration 

2mD ow + tmv2 - imDv . v + V at q a 

+ €y2V _ ge S • H = 0 (25) 
2mc a 

if the constant of integration is taken as zero, i.e., if 
all constants are absorbed in the energy term.4 •13 This 
differential equation may be linearized by the change 
of variable 

1\' = -i In tp. (26) 

In fact, rewriting Eq. (25) in terms of tp with the help 
of Eqs. (24) and (26), we obtain, after some simple 
transformations, 

atp 1 [ e 2 J2 iii - = - - ili\ - - (A + €Y A) tp at 2m c 

2 ge + (V + €Y V)1ji - - sO' H1ji. (27) 
2mc 

This is a generalized form of Pauli's equation for a 
nonrelativistic extended particle with arbitrary spin; 
here, however, the amplitude tp is a function of all 
six coordinates which, according to Eqs. (24) and 
(26), must be written as a product of a function of the 
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c.m. coordinates by a function of the internal vari
ables. As stated above, Eq. (27) is written for a given 
value of Sq' H; in the general case, however, this 
product may attain different values. To describe the 
latter situation we take advantage of the linear 
character of this equation, which allows us to add up 
the solutions for different spin states. The amplitude "p 

becomes thus a sum of products of functions, a result 
that will be used in the next section [see Eq. (34»). It 
seems convenient to stress at this point that in so doing 
we are going over from the one-particle problem to 
that of several particles in different states, employing 
a procedure analogous to that used to treat the two
body problem in paper IV. 

V. SPIN SPECTRUM AND PAULI'S EQUATION 

We proceed to demonstrate that the particle's spin 
is quantized and may take any integral or half-integral 
value, according to our theory. The proof is actually 
very simple, since it suffices to show that Sq may be 
written as a linear operator which satisfies the prop
erties usually assigned to angular momentum oper
ators; once this is verified, usual angular momentum 
theory leads us to the desired results. 

In (1) we have shown that the usual quantum
mechanical definition of momentum operator follows 
from the stochastic theory. Hence, we write for par
ticle IX 

p" = -inV", (28) 

and the total momentum operator becomes simply 

p = I p" = - inV. (29) 

" 
Similarly, the total angular momentum operator is 
given by 

The second equality may be easily demonstrated by 
making use of the formula 

~ = A" ~ + ~ - A" I ~ . 
ar~ ari op~ Ii opf 

To evaluate the last term of Eq. (30a) recall that, 
owing to the constraints, it represents the contribution 
of a triad rotating with the body, with its origin at the 
c.m. Hence, we havea.6 •u 

J = -ilir x V' - iliV'" (30b) 

where V; is a symbol for the operator with components 

(V~)", = ~ 
ih" 

= -cos IX ctg {lo" - sin lXofi + cos IX csc {lay, 
a 

(V~)y =-
OOC)/ 

= -sin 0( ctg {lo" + cos ocofi + sin oc csc {lay, 
o 

(v~)z = - = a". 
DOC z 

OC"" lXII' r:l. z are the angles measured about the fixed 
x, y, z axes, respectively, and oc, fl, y stand for the 
Euler angles as defined, e.g., in Ref. 11. Therefore, 
the spin operator is 

S = -iizV~ (31) 

and its components satisfy the usual commutation 
relations: 

(32a) 

(32b) 

As is well known, we may construct simultaneous 
eigenfunctions ofS2, Sa, and S3" 3' referring to the body 
z axis, with eigenvalues 1i2j(j + 1), lim, and nk, 
respectively, where j = 0, !, 1,'" and m, k = -j, 
-j + 1, ... ,j for any given}. Here we want to stress 
that j may take half-integral values, owing to the fact 
that the body is constructed from many (> 2) rigidly 
connected particles and, hence, all three Euler angles 
are needed to specify the rotations of the system. la .a 

In the case of only one particle (or two rigidly con
nected point particles with their c.m. at rest), two 
angles are sufficient to define the most general rotation 
and, hence, only integral eigenvalues are allowed; 
this applies, for example, to the orbital angular 
momentum of the c.m., as is well known. 

The angular momentum eigenfunctions are, up to a 
normalization constant, the generalized spherical or 
Wigner functionsll D~La), where ~ = (IX, fl, y) stand 
for the three Euler angles. Accordingly, we have 

s2D~!(~) = 1i2j(j + l)D~~~(e), (33a) 

s3D~!(~) = IimD<;,!k(~)' (33b) 

• D(j) (~) Ii (±) D(j) () S± mk = a;m m±l.k;, (33c) 
where 

s± = (2)-i(.i\ ± i52) (33d) 
and 

a~~ = au =r= m)(j ± m + l)]i. (33e) 

Since for a givenj any allowedja = m may be realized, 
the general solution to Eq. (27) for a given k may be 
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written as follows~·l1: 

(34) 

(here we are absorbing the unessential normalization 
constants in the D's). We introduce this V'(r, ~) into 
Eq. (27), written for simplicity in the form 

( iii ~ - Ho) lp = - ~ H· 5q V', ,at , 2mc 
(35) 

and get upon substitution of 51/ by the corresponding 
operators 

= _ ge ~ {Hi§iD~~t(~)V'tn(r)}. (36) 
2mc11l,; 

Applying to this equation the formulas Eq. (33) and 
taking the linear independence of the D's into account, 
we obtain a system of differential equations for the 
V'",(r) , i.e., the c.m. amplitudes for each value of m, 
thus separating c.m. and interval variables. 

Let us write down explicitly the results for the 
simplest nontrivial case, i.e., for spin ~. Denoting 

V'n by V',L, we have 
(!) (h 

V' = Dh(;)V'+(r) + D-h(;)V'_(r), (37) 

with k = ±~-. Equation (36) then gives us the system 

. a gen 
In -a '1'+ = HoV'+ - - (H3V'+ + H_V'_), 

t 4mc 

. a gen en -a W- = HoW- - - (H+W+ - HaV'-), (38) 
t 4mc 

where 

H± = HI ± iH2 , 

or, in matrix notation, 

(39) 

in ao/ = Hoo/ _ geli a. HIJ", (40) 
ot 4mc 

(J; standing for the usual Pauli matrices and qr being 
the two-component amplitude 

(41) 

In the particular case in which the structure term in 
Ho is neglected, i.e., € is taken equal to zero, Eq. (40) 
reduces itself to Pauli's equation. 

VI. SOME COMMENTS ON THE VALIDITY 
OF THE APPROXIMATION 

It is well known2 that a nonrelativistic model of the 
type used in this paper is not free from difficulties. 
For example, if we estimate the minimum value of 
02 needed to guarantee that the energy associated to 

the spin of value -} does not exceed the rest energy of 
the electron, we get a2 > Ii/me. Similar results may be 
arrived at by other analogous estimates. This value is 
very large compared with the classical electron radius 
ao = ;x.1i/me, IX being the fine structure constant. In 
other words, even if we consider an electron much 
more extended than the classical one, we are still in 
the limits of applicability of nonrelativistic mechanics. 
However, such large electron radii are not entirely 
extraneous to modern physics. For example, the 
fluctuations of the electron's coordinate due to 
Zitterbewegung are estimated to be precisely of this 
order of magnitude,IS i.e., «OX)2)~ ""'" Ii/me. Since 
these fluctuations ascribe to the particle an effective 
radius, we see that both results are in qualitative 
agreement. 

If we use this value of 02 to estimate the correction 
to the potential energy due to the Ilnite size of the 
particle, according to Eq. (27) we get 

bV = tga;\,2V "'-' HIiII1J(·n-~V. (42) 

This result has the same form, sign, and magnitude as 
the Darwin term which may be deduced from Dirac's 
equation. Since the Darwin term is interpreted as a 
consequence of the finite effective radius of the 
electron,l5 it seems reasonable to consider that Eg. 
(42) gives a nonrelativistic counterpart of the Darwin 
term. 

VII. RELATIVISTIC GENERALIZATION 

In this section we extend the preceding theory to give 
it a relativistic form by the simple expedient of for
mally rewriting the equations in explicitly covariant 
form. As was stated in the introduction, in what 
concerns the relativistic theory of the stochastic point 
particle, it seems that this formal procedure simply 
reproduces the results obtained from a more careful 
analysis7; however, as soon as we try to think of an 
extended relativistic particle, many difficult questions 
arise. For example, the very notions of center of mass, 
rigidity, and a good many related questions must be 
carefully revised and interpreted to construct a con
sistent theory. At the time being there are several 
interesting and ingenious treatments of the problem; 
however, some of these theories are not only not 
equivalent, but even conflicting among themselves. 
Since it is not the purpose of this paper to go more 
deeply into such questions, we here content ourselves 
with a first attempt by formally writing down the 
nonrelativistic spin terms in their corresponding 
explicitly covariant form. The procedure, although 
not entirely satisfactory, allows us to get some inter
esting results which would be otherwise much more 
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difficult to attain and may perhaps be more question
able. 

To begin with, we introduce the (adimensional) 
4-velocities v~ and u~ as relativistic extensions. of v 
and u; from them we construct the systematic (4) 
momentum Pil and the stochastic (4) momentum qll as 
follows: 

Pil = mcvll , 

qll = mcu)t' (43) 

In terms of these momenta, Eqs. (3) generalize to give 

m~\ = piJ/l , 

m'.Ds = qil)t + mDoiJ" , (44) 

where the sum convention over repeated Greek in
dices is being used and fl takes the values 1 to 4 with 
xI! = (x, ixo), Xo = ct. Then Eqs. (14) become 

'.DcP Il - '.Dsqp. = f~;'>, 
~)sP/l + '.Dcqp. = f~;). (45) 

The 4-forces f~±) may be calculated for a point 
particle with m~thods similar to those used in the 
nonrelativistic case. To all orders, the results for the 
electromagnetic case are the covariant generalization 
of Eqs. (\6')': 

e e e 0 f~;) = - Fl!vPv - - '.DcAI' + - Pv vA)t, 
me e me 

f~;) = ~ F)tvqv - ~ '.DBA)t + ~ qvo.A)t' (46) 
me e me 

where F)tv stands for the electromagnetic tensor .. 
Since the operators '.Dc and '.D. have been wntten 

above only to second order, we write Eqs. (46) to the 
same order, thus getting 

f~~) = (e/me)F)tvpv, 

f~;) = (e/me)F)tvqv + (eD/e)ovF)tv. (47) 

These results represent the covariant generalization of 
Eq. (16), written for the gauge 0IlA/l = O. Hence, 
taking into account the spin of the particle, but ne
glecting terms analogous to f!3) [cf. Eq: ~2~d)], we 
write as our fundamental system of relatIVIstic equa
tions the following set: 

'I)cP/l - '.D.qp. = (e/me)F"vpv + (ge/4me)0"st.F ;.V' 

'.Dcqll + 'I)'PI! = (e/me)Fp.vqv + (eDjc)ovF/lV 

+ (ge/4me)o"s~.vF;.,. (48) 

By introducing the complex variables 

~"=PI!-;q/l' 
S~v = s;v - is~V' (49) 

f: = f~;) - jf~;) + (ge/4mc)0"S~vF;.v' 
we can rewrite Eqs. (48) in the form 

'I)q~,,=f~ (50a) 

and its C.c. Explicitly, 

fJ~ = (e!mc)Fl!v:Tv - (iDe/c)oJJIV 

+ (ge/4mc)0IlS1vF;.v' (SOb) 

To integrate Eqs. (50), first note the relation 

[m'J)q, o;J = -(0)1'11)°11 , (51) 

and then write ~Il in the form 

(52) 

assuming that such a IV exists. Applying '.Dq to Eq. (52), 
using Eq. (51) to calculate 0i.'J)Qw, and introducing 
into this result Eq. (59b), we get 

~\:rll = lloll'.DQw - (1l2/2m)0IlCovwovw) 

+ f: + (e2j2me2)oiAvAJ - (ge/4mc)0"S1v F;.v' 

Therefore, from (50a) we obtain, after an elementary 
integration: 

e2 

2llm'J)qw - 1l2(0Ilw)(ollw) + --;; AliA,. 
c 

= _m 2c2 + (ge/2c)S~vF/!V' (53) 

The constant of integration has been selected so that in 
the limit of a spinless non stochastic particle we obtain 
from Eq. (53) the relativistic relation P"PIl = -m2c2• 

If now we write this result in terms of the amplitude 
1p previously defined, Eq. (26), we get 

( -illoll - ~ A/l)21p + m2c21p = (gej2e)S~vFllv1p. (54) 

This expression has the form of the Feynman-GelI
Mann equation,9 usually considered valid for any 
spin, but with the spin written still in terms of the 
relativistic Euler angles.5•6 •s 

A further rigorous treatment of the problem along 
lines similar to that followed in the nonrelativistic 
case requires explicit use of the theory of the relativ
istic spinning rigid body. To simplify matters, we 
prefer making an approximation which allows us to 
use the nonrelativistic results. Let us consider the case 
in which the electric field may be neglected, i.e., let us 
take Ao = 0 and, hence, OtA = 0 and write 

S!vFJJV ~ 2S
q

• H. (55) 

Introducing this approximation into Eq. (54) and 
proceeding as in Sec. V, we get for s = i-

(-iliOIl - ~ AllrcJ> + m 2
c2cJ> = (geli/2c)a. HcJ>, 

(56a) 
with 

(56b) 
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Known algebraic transformations15 may be used to 
cast this second-order equation for a two-component 
amplitude into a first-order equation for a four
component amplitude. Tn fact, defining (p and X by 

<1> = H<p - X), (57a) 

[iliOo - o· (iliV + ~ A) J<1> = ~me(<p + X), (57b) 

factorization of Eq. (56a) gives 

-ilioo<p - o· (iliV + ~A)X 
ne 

-me<p + - (g - 2)0. H(<p - X) 
4me2 

and 

o· (iliV + ~ A) <p + iliooX 

lie 
= - mex + - (g - 2)0 • H(X - <p). 

4mc2 

Hence, if we introduce the matrices 

Yk = (;~k -iO'k) 
o ' Y4 = (~ ~I)' (58a) 

~k = (~ ~J, Y5 = - (~ ~), (58b) 

and the four-component amplitude 

0/ = (;), (59) 

Eq. (56a) may be written in the form 

iY,,( -ilio" - ~ A,,)'Y + me'Y 

lie = - (g - 2)(1 + Y5):E • H'Y. (60) 
4me2 

We see that if g ¥= 2, a term proportional to 
+ Y5 appears in the final result; hence, from con

servation of parity it follows that we must take g = 2. 
We see that the proposed relativistic generalization of 
the stochastic theory predicts a correct value for the 
gyromagnetic ratio of the electron and that it leads 
directly to Dirac's equation for the spin t case. When 
we take g = 2, Eq. (60) recovers a fully covariant 
form and so the restriction over the electric field 
may be removed. 

VIII. CONCLUSIONS 

In the series of papers to which the present one 
belongs, we have attempted to demonstrate that a 

stochastic theory related to a subquantum level may 
be used as the basis for the foundations of usual 
quantum mechanics,and that this approach has the ad

. vantages of simplicity, physical clarity, and economy 
of postulates. However, emphasis must be given to 
the fact that our theory differs considerably from 
usual quantum mechanics in its conceptual framework 
and, hence, that the physical content of many of the 
results is not the same in both theories; concrete 
examples are the interpretation of the uncertainty 
relationships [see (I)] or, still, some aspects of the 
two-particle problem [see (IV)]. In the present paper 
we have a third example in which the spin is treated in 
a nonorthodox manner from the standpoint of usual 
quantum mechanics. However, the theory is still 
incomplete and many important questions remain 
open; among them, we may mention the very funda
mental problem of constructing the theory of the 
subquantal, stochastic interaction, the lack of which 
implies the need to use phenomenological parameters. 
The possibility of extending the theory so as to cover 
quantum electrodynamics seems realistic; moreover, 
some work along this direction may be found in the 
literature.16 
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It is possible that a complete physical theory can be written entirely in terms of operators such as 
current densities, rather than in terms of field operators. The current densities in these models correspond 
in general to distributions of unbounded operators. Such a theory is reviewed for the case of 
nonrelativistic quantum mechanics. It is found that one can exponentiate the current algebra to obtain 
a group, which may then be represented by unitary (hence bounded) operators in Hilbert space. This 
procedure is analogous to exponentiating the canonical commutation relations and obtaining the Weyl 
group. For nonrelativistic quantum mechanics without spin, the group is the semidirect product J A .K 
Schwartz space J(IP. ") with a group J" of certain C cf.) dilfeomorphisms from fR 3 onto itself. 
For fEJ and cp E3\;, the composition mapping <.r,cp) -+focp defines the semidirect product law. 
The Gel'fand-Vilenkin formalism for "nuclear Lie groups" is suitable for the representation 
theory of such a group. Almost all of the physical information is contained in a cylindrical 
measure f1 on J', the dual of the nuclear space J. The Fourier transform of It can be interpreted 
as an expectation functional with respect to the state of lowest energy. The nonrelativistic Fock repre
sentation (including the theory of n particles in a box) is examined in this formalism. Conditions on f1 are 
systematically developed which suffice to recover all of the infinitesimal generators on a common, dense, 
invariant domain in the Hilbert space. For the Weyl group slightly weaker conditions than for the 
semidirect product case would suffice. Gaussian measures in J', as well as the measures defining 
n-particle representations of J A X, satisfy these conditions. 

1. INTRODUCTION 

In a recent series of papers, Dashen, Sharp, and 
Callan investigate the possibility that a complete 
physical theory can be written entirely in terms of 
operators such as current densities, rather than in 
terms of field operators. 1-3 They approach this 
question through the study of various models. Typi
cally, the current densities are defined in terms of 
field operators, and their commutation relations are 
computed under the assumption that the fields satisfy 
equal-time canonical commutation or anticommuta
tion relations. But once the equal-time current commu
tators have been obtained, these are taken as the new 
starting point towards a theory of the physical world.4 

thus obtained from the equal-time current algebras 
are represen~ed by unitary (hence bounded) operators 
in .le. This ptocedure is analogous to exponentiating 
the canonical commutation relations and obtaining 
the Weyl group.6 

The main purpose of the present paper, which is 
based on the author's doctoral thesis, is to develop a 
rigorous mathematical foundation for the nonrela
tivistic current algebra.s 

Like the more familiar field operators, the current 
densities will correspond (in general) to distributions 
of unbounded operators in a Hilbert space .le. The 
consideration of such a representation involves us in 
familiar mathematical difficulties. The smeared current 
may have a domain of definition, dependent on the 
testing function, which is not all of .le; thus the com
mutator of two currents, for example, may not even 
be defined. 

These difficulties are overcome in the present 
approach by looking for representations of the 
exponentiated commutation relations. The groups 

Let us focus our discussion by presenting the non
relativistic model under consideration. Using the 
equal-time canonical commutation or anticommuta
tion relations of nonrelativistic field theory, one first 
proceeds formally in order to obtain the current 
algebra. The computations are reformulated rigor
ously in the Fock representation in Sec. 2. 

A. Model for Nonrelativistic Quantum Mechanicsl 

Suppose that the second-quantized fields 1p(x) and 
1p*(x) at a fixed time t satisfy the nonrelativistic equal
time canonical commutation relations 

[1p(x), 1p(y)]_ = [1p*(x), 1p*(y)L = 0, 

[1p(x), 1p*(Y)L = bex - y) (1.1) 

or the anticommutation relations7 

[1p(X), 1p(Y»)+ = [1p*(x), 1p*(y)]+ = 0, 

[1p(x), 1p*(Y)]t- = b(x - y). 

We define the "particle density" 

p(x) = 1p*(x)1p(x) 

and the "current density" 

(1.2) 

(1.3) 

462 
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Using the relations (1.1) or (1.2), we can now 
compute the commutation relations satisfied by p 
and J. These turn out to be 

[p(X), p(y)] = 0, (1.5) 

[p(X), Jk(y)] = -i a~k [!5(x - y)p(x)], (1.6) 

and 

[J ;(x), Jk(y)] = - i a~k [~(x - y)J j(X)] 

+ i O~i [~(x - y)Jk(y») , (1.7) 

independently of whether one starts with (Ll) or (1.2). 
Let us obtain the smeared form of Eqs. (1.5)_(1.7).B 

For notational purposes, let g denote a triple 
(gl, g2, g3) of smearing functions, and define 

3 

J(g) = !Jigk)' (1.8) 
"=1 

where as usual 

(1.9) 

etc. The smeared commutation relations then become 

[p(j), peg)] = 0, (1.10) 

[p(j),J(g)] = ip(g· Vj), (l.ll) 

[J(f), J(g)] = iJ(g· Vf - f· Vg). (1.12) 

It is also interesting to consider the nonrelativistic 
model with spin. Suppose now that the fields 1J!(x) 
and 1J!*(x) are two-component spinors 

1J! = [~:l 1J!* = [1J!i; 1J!:J (1.13) 

satisfying either canonical commutation ( - ) or 
anticommutation (+) relations 

[1J!rCx), 1J!.(Y)]± = [1J!:(x), 1J!;(Y)]± = 0, 

[1J!'(x), 1J!:(Y)]± = ~rs~(x - y). (1.14) 

Then, in addition to the "particle density" p(x) and 
the "current density" J(x) defined by (1.3) and 0.4), 
a "spin density" 

l:(x) = t1J!*(x)o1J!(x) (US) 

must be introduced, where 0 = (0'1,0'2, 0'3) are the 
familiar Pauli spin matrices. These, we recall, satisfy 
the commutation relations 

The distributions p and J continue to satisfy the 
algebra given by Eqs. (1.5)-(1.7) or (1.10)-(1.12). In 

addition, we have the new commutation relations 

[p(x), ~;(y)] = 0, ( 1.17) 

[~;(X), Jiy)] = -i a~k [6(x - Y)~lx)], (1.18) 

( 1.19) 

again independently of whether we start with 
commutation or anticommutation relations in (1.4). 
Letting 

3 

l:(g) = !O:,,(gk»' ( 1.20) 
k=1 

and recalling that 

3 

! f,ikdigk = (f X g)l' (1.21 
i.k=l 

we find that the smeared commutation relations become 

[pc!), ~(g)] = 0, 

[~(f), J(g)] = i~(g • Vf), 

[~(f), ~(g)] = i~(f x g). 

B. Relativistic Models1- a 

(1.22) 

(1.23) 

(1.24) 

The status of the various relativistic models remains 
open. In the case of nonrelativistic quantum me
chanics, the currents can be obtained rigorously from 
fields in the Fock representation; but in the relativistic 
models, no such representations of the current alge
bras are immediately available. 

Furthermore, it is well known that Schwinger 
terms cannot be neglected in relativistic models.5•9 

But the problem of representing an equal-time 
algebra in which the current commutators may be 
formally infinite (such as occurs in the quark model) 
remains to be overcome. 

At present these are the major considerations in 
attempting to generalize from the nonrelativistic case 
discussed in the present paper. 

C. Discussion 

Now that we have considered, in the nonrelativistic 
model, the local operators which are taken to be the 
"coordinates" or "building blocks" of a physical 
theory, let us ask what is necessary to specify such a 
theory completely. 

First, we need a representation of the (smeared) 
current commutation relations by self-adjoint opera
tors in a Hilbert space .le. As we shall see in Sec. 3, we 
may require instead a unitary representation of the 
group obtained by exponentiating the current commu
tators. 
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Next, we expect there to be a unitary representation 
£ in JC of the Euclidean group. This representation 
must map the fixed-time current algebra into itself 
via the formula 

£(a, R)J(j)£(a, R)* = J(j{a.m) 

for a local current J, where 

( 1.25) 

(1.26 ) 

In addition, there will be a self-adjoint Hamiltonian 
H which generates time translations; i.e., 

[H, l'>] = j-10 (1.27) 

for a fixed-time operator l'> built from the currents. 
The spectrum of H must be bounded below. 

Since currents, unlike fields, are in principle 
directly observable, operators such as the total charge 
or the baryon number necessarily commute with all 
of the currents. These operators define superselection 
rules, and reduce the Hilbert space into mutually 
incoherent subspaces of fixed charge, baryon number, 
etc. Suppose that for a certain model, the currents are 
defined from the fields in a particular representation, 
and we wish to know when "enough" currents have 
been defined to give us a "complete set of coordi
nates." The answer is obtained by finding the super
selecting operators in the representation. When the 
only superselecting operators are those expected 
from experimental observations, we have included 
enough observables in the current algebra. 

In each irreducible subspace, one may assume the 
existence of a vector, Q cyclic for some maximal 
Abelian subset of the currents. For certain potentials 
in nonrelativistic quantum mechanics, there exists a 
(normalizable) state of lowest energy O. In such 
theories, the Hamiltonian can be recovered on a 
dense set from the choice of cyclic vector 0, HO = 0, 
together with the equation of continuity 

ap = -v.J. 
at (L28) 

Essentially, all of the physical information is contained 
in the expectation functional (n, eiP{f)O). 

For relativistic models, we shall expect that one 
can in principle perform any physical experiment in 
the vacuum sector by appropriately introducing 
particles or antiparticles "behind the moon." 10 

Taking the cyclic vector to be the vacuum in the 
irreducible subspace containing it, we should be able 
to use a conservation equation to conclude that the 
matrix elements of the Hamiltonian are determined 
by a vacuum expectation functional. Similarly, in the 

vacuum sector of Je, one should be able to recover the 
representation, of the Lorentz group from the vacuum 
expectation functional.6 

A final remark: One expects that there may be 
representations of the current algebra which do not 
arise from an underlying representation of the canon
ical formalism. ]f such a representation describes the 
physical world, then local currents must replace fields 
as the "building blocks" of nature. In the relativistic 
axiomatic theory of local observables, one associates 
with each bounded region of space-time a C*
algebra of local observables.1o Our view is that the 
exponentiated currents and their linear combinations 
may constitute a promising specific choice for the 
generators of such a system of C*-algebras at a fixed 
time t. One recovers the 4-dimensionally smeared 
algebras by representing the fixed-time formalism in 
a Hilbert space, specifying the Hamiltonian, and 
computing (for a bounded local operator A) 

A(h) = fdteilJ~(ht)e-ilIt, (1.29) 

where h is a 4-dimensional smearing function, ht(x) = 
h(x, t), and 

(1.30) 

The (generally unbounded) currents are affiliated in 
JC with the weak closures of the local C*-algebras, in 
a sense which can be made mathematically precise. l1 

2. THE FOCK REPRESENTATION 

In this section, we look at the currents defined in the 
nonrelativistic Fock representation of the fields.12 .13 

Thus, one obtains a (reducible) representation of the 
current algebra [(1.10)-(1.12)], which splits into the 
direct sum of irreducible representations having fixed 
particle-number and exchange symmetry. It is 
demonstrated that in one spatial dimension the n
particle representations of (1.10)-( 1.12) having differ
ent exchange symmetries are unitarily equivalent, 
although they are inequivalent in higher dimensions. 
The Fock representation provides an important 
example for study; it is useful in exponentiating the 
current algebra (Sec. 3) and in evaluating the status 
of the representation theory (Sec. 4). 

Let Je denote the Hilbert space. 'Y E Je may be 
written ('Yl , 'Y2 ,"', 'Yn," .), where 

'Yn = 'Yn{xl ,"', xn) 

is an L2 function of n vector variables symmetric (or 
antisymmetric, in the case of the anticommutation 
relations) with respect to coordinate exchange. We 
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impose the condition 
00 

('l', 'l') = 2 ('l' n' 'l' n) < 00, (2.1) 
n~O 

where ('l'1" 'l' ,,) denotes the usual L2 inner product. 
The action of fields satisfying the commutation 

relations (Ll) is given by 

[7p(f)'l'Jn(Xl , ... , x,,) 

= (n + 1) if 'l' n+l(Xl ' ... , x n ' x)f(x) dx, (2.2) 

[7p*(f)'l'J,,(xl , ... , xn) 
n 

= n -i 2 f(Xi)'l' n-l(Xl, ... , Xi' ... ,X,,) (2.3) 
i~l 

or, in unsmeared form, 

[7p(X)'l']n(Xl' ... , xn) = (n + 1 )i'l'(Xl , ... , x 1" x), 

(2.4) 

n 
= n-i Z b(x - xi)'l' n-l(Xl , ... , xi' ... ,X1,). (2.5) 

;=1 

The action of fields satisfying the anticommutation 
relations (1.2) is 

[7p(f)'l']n(Xl' ... , xn) 

= (n + l)i f'l' n+l(Xl , ... , Xn , x)f(x) dx, (2.6) 

[1p*(f)'l']n(Xl' ... , xn) 
(_1)n+l n _ 

= f Z(-l)i+Y(X;)'l'n_l(Xl ,"', x;,"', x n ), 

n i=l (2.7) 

or 

[1p(X)'l']n(Xl, ... , xn) = (n + l)t'l' ,,+l(xl , ... , X n , x), 

(2.8) 

[1p*(X)'l'Jn(Xt' ... , xn) 

( 1)n+l n 

= -=-r- Z(-1)i+
1
t5(x - x;) 

n ;=1 

x 'l' n-l(Xl , ... , Xi' ... ,xn ). (2.9) 

Defining p and J by (1.3) and (1.4), one obtains, 
either from (2.4) and (2.5) or from (2.8) and (2.9), 
the result 

n 

[p(!)'l']n = 2!(x j )'Yn, (2.10) 
;=1 

n 

[J(g)'Y]n = -ti2[g(Xj).Vj + V;.g(xj)]'Yn (2.11) 
;~l 

for the smeared operators. One can verify directly 

that Eqs. (2.10) and (2.11) indeed define a representa
tion of the current algebra (1.10)-(1.l2). 

The n-particle subspace of the Fock representation is 
defined to be the set Je" = {'Y E Je I'Y = (0, ... , 
0, 'l' n' 0, ... )}. It is clear from (2.10) and (2.11) that 
p(j) and J(g) map Jen into Je,,; p(j) and J(g) commute 
with the number operator (N'Y)n = n 'l' n' The "n
particle representation" means the representation 
(2.10) and (2.11) restricted to Jen . For n ~ 2, we 
here distinguish between n-particle representations 
for which the 'Y n have different exchange symmetries. 
(We note that p and J always preserve the exchange 
symmetry of'Y n.) 

In the n-particle representation, p(j) is a bounded 
operator, and II p(f) II = n . sup f(x). The J(g) , on 
the other hand, are unbounded operators in Je n • 

But the dense subspace of Jen consisting of only the 
Schwartz-space functions provides a common domain 
for all of the p(f) and J(g); furthermore, this domain 
is invariant under the action of the p's and the J's. 

Next we proceed to show the unitary equivalence 
of n-particle representations of the current algebra 
(1.l0)-(1.12) having different exchange symmetries, 
in the case of one spatial dimension. 

Lemma 1: Let A be a differential operator (defined 
on J) which is essentially self-adjoint in L2( fR n). A * * 
is its self-adjoint extension. Let 'Y E L2(fR n), and 
consider 'Y(x l , .•. , xn) as a generalized function. 

Then'Y E D A" (the domain of A * *) if and only if 
the generalized function (A'Y) (Xl , ... , xn) is square 
integrable. 

Proof" Suppose 'Y E L2(fR ") with (Ao/) (Xl , ... ,X,,) E 

L2(fRn). Then, for <I> E J, ('Y, A<I» = (X, <1», where 
X(Xl' ..• , xn) = (A'Y) (Xl , ... , Xn) E L2(fR n). Thus 
'Y E DA • = DA ••. 

The converse is trivial. QED 

Lemma 1 can be extended without difficulty to the 
case where A is a differential operator preserving 
exchange symmetry and acting on the symmetric or 
antisymmetric subspace of L2(IR n). 

Lemma 2: Let Jes(Jea) denote the Hilbert space of 
symmetric (anti symmetric) L2 functions of n variables. 
Let a(x) be the generalized function xllx\, and 
define a (Xl , ... ,Xn) = TIr,<r. a(xr• - xr,) for n ~ 2. 
a(xl' .. " xn) is totally anti symmetric with respect to 
coordinate exchange. 

Let J(g) be the differential operator 

n 1 ( a a ) ~ -2' g(xk);- + ;- g(xk ) , 
k=l I uXk uXk 

(2.12) 
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where g has, say, compact support. We shall see in 
Sec. 3 that leg) defines an essentially self-adjoint 
operator on the domain of Schwartz-space functions 
in L2, Jes • or Jell' 

Then (as generalized functions) 
n 

J(g)a(xra - xr) = (20-11 g'(xk)a(xr• - x.), 
k=l 

(2.13) 
n 

J(g)a(xlJ' ", xn) = (2irl1 g'(xk)a(Xl , . ", Xn)· 

Proof First we write 

J(g)a(xr. - x.,) 
I n 

= -: 1 g'(xk)a(Xra - Xr) 
21k=1 

k=l 

(2.14) 

1 (0 0 ) + -: g(xr);- + g(x •• ) ~- a(x,. - Xr.). (2.15) 
luX", ux ... 

Setting ~ = xr, + x r • and n = x r , - xr ., we find that 
the second term of (2.15) becomes 

7{[g(~ :n) + g(~ ;n)J:~ 

+ [g(~: n) - g(~; n) J:n}a(n), (2.16) 

which vanishes since oa(n)/on = 2b(n)· 
Thus (2.13) is proved. 
Let us now write 

a(xl' ... , xn) = a(xr2 - x,,)a(x1 , ••• , x n). (2,17) 

Using (2.13), one can show that (forfE J) 

a(x,. - xr)l(g)f = J(g)[a(xr. - xr)f] (2.18) 

by evaluating with respect to a general Schwartz
space function k(x1 ,"', xn). By Lemma I, Eq. 
(2.18) makes sense in V. 

In turn, suppose that a(x1 , ••• , xn)f E L 2 has been 
shown to be in the domain of leg) * *, where a is the 
product of N terms of the form a(x,. - x,,). Then the 
generalized function l(g)[a(xr. - xr)af] equals 

a(xr • - xr)l(g)**[af], 
since 

(l(g)[aaf1, k) 

= (af, aJ(g)k) = (af,J(g)**[ak]) 

= (al(g) * * [afl, k) for arbitrary k E J. 

Letting f(xl , ••• ,xn) = 1 on the support of g, 
we prove (2.l4) by induction on N. QED 

Theorem 1: In the case of one spatial dimension, 
the n-particle representations of the current algebra 

(1.10)-(1.12) having different exchange symmetries 
are unitarily equivalent. 

Proof: Define Q:Jes -...... Jea by (Q'Y)(x1 , ••• ,x,,) = 
a(xl , ••• ,xn)'Y· Q is unitary, and QPs(f) = p,,(f)Q. 
Let leg) be the differential operator (2.12), and 
ls(g)** or l,,(g)** its self-adjoint extension in Jes or 
Jea • For'Y E D J (u)" in Hs ' the generalized function 
l(g)[a(xl' ... , xn)'Y] equals a(xl' ... , xn)J.(g)**q.', 
as may be shown by evaluating with respect to a 
general Schwartz-space function and using Lemma 2. 

Then a(xl ,"', xn)'Y E Jea is in the domain of 
la(g)**· 

Thus Q preserves the domain of l(g)**, and we can 
conclude that Qls(g) = la(g)Q. QED 

In Sec. 3, we shall see that Theorem I cannot be 
extended to the case of more than one spatial dimen
sion; in that case, representations with different 
exchange symmetries are unitarily inequivalent. 

3. EXPONENTIATION OF THE CURRENT 
ALGEBRA 

We have seen that the smeared currents are apt to 
be unbounded operators and thus have domains of 
definition which are, in general, not all of Je. Our 
goal is to exponentiate the current algebras and 
obtain groups, which can be represented by unitary 
(hence bounded) operators. This procedure is analog
ous to replacing the relativistic equal-time canonical 
commutation relations of field theory by the Weyl 
group. We now turn our attention to performing the 
exponentiation for the nonrelativistic model reviewed 
in Sec. 1. 

A most useful formula will be 

<Xl 

e.4.Be-A = L (n !)-l(adn A)B, (3.1) 
n=O 

where A and B are operators and where 

(ad A)B = [A, B]. (3.2) 

(3.1) may be proved formally by expanding e.4. and 
e-A in power series and regrouping the terms. 

A. Vector Fields and Flows 

LetfE J be a function of a single variable, and let 

fie dx' 
F(x)= -

b I(x') 
(3.3) 

be defined in a region between zeros a1 and a2 off, for 
an arbitrary fixed b in that region. a1 and a2 may be 
± 00, Then F: (al , a2) -+ IR and F-l: IR -+ (a1' a2) 
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F (x) 

FIG. I. The func
tion F(x) defined be- --+----+--+------if--- X 
tween zeros a, and a, 
of [(x). 

102 
1 

I 
I 
I 
I 
I 

are one-to-one, onto, C Cf
o 

functions (Fig. I). F-1 is C 'f. 
since F-l(F(x» = x, (F-l)'(F(x»' rex) = I, whence 

(3.4) 

If F-l is Cn , we can deduce from (3.4) that it is 
Cn+!; hence F-l is C ifo ' 

Define 

<p{(x) = F-1(F(x) + t)lxE (Q,.Q,), (3.5) 
tE':, 

and set 

If{(al) = (11, g;~«(l2) = a2, V t. (3.6) 

Then If; (x) may be interpreted as the floll' for time t 
by the veclorfield f That is, g;i (x) satisfies the differ
ential equation 

a</l~~X) = f(</lXx», 

with the boundary condition 

</l{=o(x) = x. 
In fact, 

O</l{(x) = (F-1)'(F(x) + t) 
ot 

= [F'(F-1(F(x) + t))]-1, by (3.4), 

= [F'(</l{(X))]-l 

= f(</l~(x», by (3.3). 

(3.7) 

(3.8) 

In particular, </l;(x) is independent of our original 
choice of b. 14 

Next, consider the expression {exp [Ig(x) (djdx)]}f, 
for f, g E J. Setting g(x)djdx = djd~, we then have 
d~/dx = 11g and ~ = G(x), where G is defined as in 
(3.3) in a region between zeros of g. Hence 

[exp (tg(X) :J ]f(X) = exp (I ;~)f(G-la» 
= f(G-la + I» 
= f(G-\G(x) + I» . 

But we saw in (3.5)-(3.8) that </lHx) = G-l(G(X) + t) 
defines the flow for time t by the vector field g. 

We are thus led to the important equation 

efl'Vf(x) = f(cp~(x», 

where cp~(x) satisfies 

Ocp~(x) (II(» -- = g CPt X at 

(3.9) 

(3.10) 

and cP~=o(x) = x. Equation (3.9) may be verified 
directly by differentiating with respect to I, at t = 0.15 

B. Obtaining the Group 

The nonrelativistic model is defined by Eqs. (1.10)
(1.12). Of course, (\.\0) immediately gives us 

(3.11 ) 

From (1.11), using (3.1), we have 

(3.12) 

where, in the last step, p is taken to be in some sense 
continuous in its argument. Thus, 

Also, 

thus 

eiJ(I)eiP(f) = exp [ip(eg·~f)]eiJ(II). (3.13) 

eip(f)J(g)e-ip(f) = i !..:. [ad" p(f)]J(g) 
11=0 n! 

= J(g) - p(g. Vf); (3.14) 

(3.15) 

Equation (3.1) does not give us the means to 
multiply exp [ill(f)] by exp [itJ(g)]. Let us look at 
this question in the I-particle, I-dimensional Fock 
representation. Here, 

and 

or 

J(f) = -if.!l.... - til' 
dx 

exp [iJ(f)] = exp (f ;~ + ~p(f'»), 

But, by (3.15), 

(3.16) 

where j(x)(dhjdx) = -tif' or h = 1i In (j) Thus 
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and, from (3.9), plication rules 

eitJ(fhy(x) = 'Y(IP{(X»(f(tp{(X)}( 
f(x) I 

(3.19) u(j)U(g) = u(j + g), 

V(~)U(f) = u(fo ~)V(~), 

(3.26) 

(3.27) 

(3.28) 
Since one can easily show [e.g., from (3.5)] that 

f(IP~(x» = ~ 1P~(x), 
f(x) dx 

(3.20) 

we obtain 

(d)! eitJ(f)'Y(x) = 'Y(tp{(x» dx tp{(x) (3.21) 

in the I-particle, I-dimensional Fock representation. 
(3.21) clearly defines a unitary operator, as is desired. 

Taking note that exp [itJ(j)] does not depend 
directly on I, but on (d, let us define, in general, 

U(f) = eip(j) (3.22) 

and 

(3.23) 

Equation (3.21), in the higher-dimensional Fock case, 
becomes 

[ (
O( tplt) J! V(cp~)'Y(x) = 'Y(cp~(x» det oxtj , (3.24) 

where we recognize the square root of the Jacobian as 
just that factor necessary to make V unitary. 

Finally, it is not hard to show in the Fock repre
sentation that 

V(cp)V(~) = V(~ 0 cp) (3.25) 

for flows ~ and cpo 
Let us summarize these results as a theorem. 

Theorem 2,' Let I E J, and let g be a Coo vector field 
on IRs with components in J. The flow cp7 is then Coo 
in x and t and may be said to suitably approximate the 
identity mapping as Ixl ~ 00. Let ~ be a Coo diffeo
morphism from IRs onto IRs, which is a finite product 
of flows cpr. For'Y E L2(IRS), define 

U(f)'Y(x) = eif(x)'Y(x) 

and 

V(~)'Y(x) = 'Y(~(x)>[ det (~::) r. 
Then U(t!) and V(cp~) are strongly continuous 1-

parameter unitary groups. The infinitesimal generators 
of these groups, which exist and define self-adjoint 
operators by Stone's theorem,I6 are, respectively, 
p(/) and J(g) , where p(f)'Y(x) = f(x)'Y(x) and 
J(g)'Y(x) = -M(g· V + v· g)'J1'(x). That is, V(t!) == 
eitp(f) and V(cp:) = eitJ(g). U and V satisfy the multi-

V(cp)V(~) = V(~ ocp). 

Proof' All of the assertions are directly verifiable by 
computation. In particular, 

p(f)'Y = lim U(t!) - I'Y (3.29) 
t -+0 it 

and 

J(g)o/ = lim V(cp~) - 10/, (3.30) 
t-+O It 

where the limits are understood in the L2 sense. We 
omit the details. QED 

C. Remarks 

(1) Henceforth, a representation of the group 
defined by Eqs. (3.26)-(3.28) will be taken as the basis 
of the theory. We should note that not every repre
sentation of a Lie algebra leads to a corresponding 
representation of the Lie group. In fact, Nelson gives 
us an example of two symmetric operators in a Hilbert 
space :re, defined and commuting on a common, 
dense, invariant domain D of essential self-adjointness, 
whose spectral resolutions do not commuteY In 
order to ensure that a particular representation of 
the unexponentiated formalism leads to one of the 
exponentiated version, one needs to postulate analytic 
vectors in the domain D. We will not go into this 
subject further here. In Sec. 5, sufficient conditions 
are developed for recovering the infinitesimal gener
ators in a representation of the exponentiated for
malism. 

(2) We saw in Theorem 2 that, in the Fock repre
sentation, the currents can be exponentiated with 
V(tj) = eitp(j) and V( cpn = eitJ(I) , so that U and 
V satisfy 

U(jl)V(~I)U<h)V(~2) = U(ft + h 0 ~I)V(~2 0 ~I)' 

(3.31 ) 

But (3.31) is the multiplication law for elements of the 
semidirect product J A J\, of the groups defined by the 
set J of all f's (under addition) and the set J\, of all 
~'s (under composition). The mapping J x J\, _ J, 
which defines the semidirect product, is given by 
(j, ~)~/o~. 

The additive group of the f's has already been 
identified as Schwartz space J.I8 Among its advan
tages, J is suitable for the representation theory 
discussed in Sec. 4 and is a normal subgroup of J A J\,. 
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In Ref. 5, a definition and a topology are proposed 
for .)\" such that the group operations of J II .)\, are 
jointly continuous. (J is taken to have the usual 
Schwartz-space topology.) The I-parameter subgroups 
cpT in J\, are continuous in t. Thus J II.)\, defines. a 
topological group, and, if we choose to look at Its 
strongly continuous representations, we are assured 
that U(tf) and V(cpn define strongly continuous 
I-parameter groups of unitary operat?rs. . 

For simpliCity, we shall often restnct our attentIon 
to elements of J(, with compact support, i.e., satisfying 
~(x) = x outside of a compact set. 

D. The Nonrelativistic Model with Spin 

This model is defined by Eqs. (\.10)-( 1.12) together 
with (1.22)-(1.24). Of course, the p-J commutators 
give us the group J II.)\" as before. Since p and ~ 
commute, we also have immediately 

Applying (3.1) to the l:-J commutator, we obtain 

eiJ(K)l:(h)e-iJ(K) 

= i in [ad" J(g)]l:(b) 
11=0 n! 

= i i-l:«g. v)nb) = l:(e".vh) (3.33) 
71=0 n! 

or, recalling (3.9), 

and 

l x (l x g) = leg 'l) - g. 

Thus we obtain 

ei I:(f)ei 1:(B)e- i1:(O = exp [-i~(RU: -Ifl)g)]. (3.38) 

This equation suggests that the generators of the 
group of exponentiated l:'s should b~ local rotat~ons 
R(x) with, say, compact support, that IS, COO mappIngs 
R: 1R3 ...... SOa with R(x) = I outside a compact 
set. The law for group multiplication should be 
(R l R2)(x) = R1(x)R2(x), where the right-hand side 
denotes multiplication in SOa. We would then have 
the correspondence emf) = Rlx) where 

~ 
Rf(x) = R«((x), - If(x)I). 

But, as is well known, if we limit ourselves to the 
rotation group, we will be able to obtain only repre
sentations in which the particles have integral spin. 
In order to accommodate half-integral spins, we must 
replace the rotation group by SU2 • Therefore, we let 
T: 1R3 ...... SU2 be a Coo mapping with compact support 
and 1':) be the group of all T's under the multiplication 
law (TIT2)(X) = T1(x)T2(x). We then have the corre
spondence eiW) = Tr , where 

Tf(x) = exp [-iif(x). 0]. 

Here, 0 = (a l , a2 , aa) are the Pauli spin matrices 
satisfying (1.l6). 

We observe that 
eitJ(K)ei1:(b)e-itJ(K) = exp [il:(b 0 cpnJ. 

(3.34) e-!ih'e-!iK'''e+if'!a = exp [- !iR(j, -Ifl)g . o} 

Applying (3.1) to the l:-l: commutator, 

ei 1:(f)l:(g)e-iI(f) 

= l:(g) + j2L(f x g) + (i4/2!)l:{f x (f x g» 

+ (i 6j3 !)l:( -lfl 2 (f x g» 

+ (i 8/4!)l:(-lfI2(f x (f x g») +"', (3.35) 

where we have used the identity f x (f x g) = 
(f. g)f - (f. f)g, whence f x [f x (f x g)] = -lfI2 • 

(f x g). (3.35) becomes 

L(g - (f x g) sin If I - Ix (Ix g). (cos If 1- 1», 

where 1= f/lf!. But, if R(fl, O)y denotes the vector 
obtained by rotating the vector y about the unit 
vector fl by angle 0, one can show that 

g - (jx g) sin If 1-Ix (jx g) (cos If I - 1) 

= R(j, -lfDg, (3.36) 
using 

R(n, O)y = (cos O)y + (1 - cos O)fln • y 

+ (sin O)n x y (3.37) 

since 
(3.39) 

[~f. 0, tg· 0] = ~i(f x g) . 0. (3.40) 

Let j)(j)(M) be the (2j + I)-dimensional representa
tion of SU2 , where ME SU2 • Let '¥(x) be a (2j + 1)
component spinor. Define the representation W of 
1':) by 

W(T)'¥(x) = ~:ow(T(x»'¥(x). (3.41 ) 

Equation (3.41), along with U(f)'¥(x) = eit(x),¥(x) 
and 

V(~)'¥(x) = '¥(~(x» det [ (~:: (X») J!, 
defines the I-particle Fock representation having 
spin j. Equations (3.26)-(3.28), together with 

W(T)U(f) = U(f)W(T), (3.42) 

V(~)W(T) = W(To~)V(~), (3.43) 

(3.44) 

are satisfied. 
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In short, U(j)W(T)V('-\I) defines a representation of 
(J ® 'b) 1\ J(" where ® is the direct product and 
where 1\ is the semidirect product defined by the law 
'-\I: (j, T)-+ (jo'-\l, To '-\I). 

Let us remark that nonrelativistic quantum mechan
ics is supposed to be Euclidean invariant; thus there 
is also a unitary representation E(a, R) of the Euclidean 
group IR 3 1\ SOa in the Hilbert space :re. E must 
satisfy 

E(a, R)U(f)E(a, Rr l = U(j(a.m), 
where 

fca.m(x) = feR-lex - a». 
The action of E on J(, is given by 

E(a, R)V('-\I)E(a, R)-l = V('-\Ica.R», 
where 

'-\Ica·R>(x) = R'-\I(R-I(x - a» + a. 
It is easy to show that if '-\I = cpL then 

Finally, when spin is included, we have 

E(a, R)W(T)E(a, R)-l = W(Tca.m ), 
where 

E. The n-Particle Representation 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

The n-particle representation U(j) J{('-\I) of the 
group J 1\ J(, is given by 

U(f)o/(XI' ... , x n) 

= exp (i~/(Xk»)'¥(XI" . " xn), (3.52) 

V(\jJ)o/(XI' ... , x,,) 

= '¥(\jJ(Xl)' ... , '-\I(x,,)) IT [det ((hi (Xk») J!. 
k~l ox' 

(3.53) 

Just as p and J preserve the exchange symmetry of 
0/ in the unexponentiated version (2.10) and (2.11), 
likewise U and V now preserve exchange' symmetry. 

Lemma 3: Let g be a C <;() vector field with compact 
support. Then in the n-particle representation of 
J 1\ J(" J(g) defines an essentially self-adjoint operator 
on the domain D of Schwartz~space functions in L 2, 

:re., or :rea, respectively. 

Proofl9: With V(cpf) = eitJ(g), the domain D is 
invariant under V( cpf) in L2, JCs , or:rea , respectively, 
as is obvious from (3.53). Suppose that J(g) is not 
essentially self-adjoint on D. Then there exists a vector 
'1" in the Hilbert space, '1" :;6 0, such that, for all 

<1> E D, (lY, J(g)<1» = ±i(o/, <1». Now CP', V(cpf)<1» is 
differentiable in t at I = 0; therefore, it is differenti
able for all t by the in variance of D under V(cpf). 
Hence 

- i ~ ('1", V( cp~)(}) = ('Y, J(g) V( <p~)<1» ot 
= ±i('¥, V(cp~)<1». (3.54) 

This differential equation has the solution 

(0/, V(cp~)<1» = (0/, <1»e'ft. (3.55) 

But ('1", V( cp~)<1» is a bounded function of I, while 
(0/, <1»e'ft is unbounded, unless (0/, <1» = 0. Thus 
('1", <1» = ° for all <1> in D, and '1" = 0 since D is 
dense, a contradiction. QED 

This is the result promised in Lemma 2 and used in 
proving Theorem 1. 

Theorem 320: In the case of more than one spatial 
dimension, the n-particle representations of the 
current algebra (1.10)-(1.12) having different exchange 
symmetries are unitarily inequivalent. 

Proof' Suppose that Q::res -+ Xa defines a unitary 
equivalence. From the fact that QUs(f) = Ua(f)Q, 
where the subscripts refer to Xs or X"' we conclude 
that Q merely multiplies by a measurable, antisymmet
ric function a(xl ,"', x11 ). Since Q is unitary, 
la(xI' ... , xn)1 = 1 almost everywhere. 

From the fact that QV.('-\I) = Va('-\I)Q, we have 
(V \jJ E J(,) that a('-\I(xl), ... ,'-\I(xn» = a(xI' ... , xn) 
almost everywhere. The idea of the proof is to find a 
flow '-\I which, roughly speaking, exchanges Xl and X2 , 

in the case of more than one spatial dimension. Then 
the invariance of a under composition with '-\I will 
contradict the antisymmetry of (J under coordinate 
exchange. 

The details are as follows, for n particles in s 
spatial dimensions. Consider the set X+ of all points 
(Xl' ... , xn) such that the complex number a(xI' ... , 
xn) is in the interior of some fixed half-plane H+. 
Since (J is measurable, X+ is a measurable set, in 
Lebesgue measure fl. Let Y be the set of all points 
(Xl' ... ,xn ) such that IXII < 1, IX21 < 1, IXal, 
Ix41, ... , Ix,,1 > 2. In the definition of X+, the half-
plane H+ may be chosen so that fl (X+ (") Y) > O. 

For any measurable set X in IR m with fleX) > 0 
and for any t5 > 0, one can find an open set 0 with 
fl(O) < 00 such that fl (0 (") X) > (l - t5)fl(O), i.e., 
most of 0 is contained in X. 21 

Let 0, then, be an open set in IRsn (") Y, such that 
most of 0 is in X+ (") Y. 
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FIG. 2. Proof of Theorem 3. 

Let BI , ... , Bn denote open balls in IRs. Product 
sets of the form BI x ... x B n' where all Bi have 
equal radii, form a base for the topology in IRsn. It is 
not difficult to show that any open set in R sn can be 
written as the union of countably many disjoint sets 
of the form BI X ... x Bn , where all B j have equal 
radii, together with a set of measure zero. 

Therefore, one can find B = BI X ... X Bn C Y, 
where all Bj have equal radii, such that most of B is 
in X+ n Y. (See Fig. 2.) 

Let ~ be a flow on IR· with support in the closed 
ball of radius 2 about the origin. ~ may be chosen to be 
volume-preserving inside the closed ball of radius I 
about the origin, so that ~(BI) = B2, ~(B2) = BI . 

Inside the closed ball of radius 1, ~ is simply rotation 
about an axis or axes drawn perpendicular to the line 
joining the centers of BI and B z at the midway point 
between them. Of course,~ only exists if s > L 

Now a takes on values inside H+ for (Xl' ••. , Xn) E 

X+; hence a maps most of B into H+. As a is anti
symmetric with respect to exchange of Xl and X2, a 
maps most of B' = B2 X BI X '" X Bn into H-, 
the complementary half-plane. But ~:B --+ B' is 
volume-preserving, and, if a is invariant under \jJ, a 
must map most of B' into H+, which is impossible. 

QED 
4. REPRESENTATION THEORY 

For several reasons, it is important to study the 
different representations of the groups obtained in 
Sec. 3, with the aim of classifying them. 

(1) We have seen how the current algebra can be 
obtained from the nonrelativistic canonical commuta
tion or anticommutation relations offield theory, both 
formally and in the Fock representation. The question 
remains open whether every representation of the 

current algebra arises, like the Fock, from an under
lying representation of the canonical formalism. In a 
sense, this question is fundamental to the whole 
approach, for it asks whether we can .do anything 
with currents which we cannot do wIth fields. It 
becomes even more significant in relation to relativistic 
current algebras. 

(2) We have succeeded in identifying representa
tions of 3 "J\, which describe n identical particles 
and in demonstrating the unitary inequivalence of 
n-particle representations whose states obe~ di~erent 
statistics, in the case of more than one spatIal dImen
sion. In a later paper, representations will be obtained 
which describe infinitely many identical particles, at 
a constant average density.22 It is important to have a 
unified framework in which all of these representations 
can be studied. 

(3) Grodnik and Sharp examine a volume-cutoff 
theory of n particles.23 They obtain a formal repre
sentation of the current algebra through multiplica
tion and differentiation on a space of functions of 
infinitely many complex variables. The theory studied 
in this section can be applied to give rigorous meaning 
to such a representation. 

(4) It is certainly of physical interest to inquire 
whether the current algebra can be recovered (on an 
appropriate domain) by taking the infinitesimal 
generators of the continuous I-parameter subgroups, 
in a given representation of the exponentiated 
formalism. In Sec. 5, we shall characterize some 
representations in which this is indeed the case. 

A. Formalisms 

A representation of one of the groups from Sec. 3 
certainly involves a representation U(f) of the 
Abelian subgroup J. The idea common to all of the 
methods we discuss is to express these U(f) as 
diagonal operators. We restrict ourselves initially to 
representations in which there exists a cyclic vector Q 

for the C*-algebra associated with the U(f). 
Let'l{ be the C*-algebra generated by {U(f) if E J}.24 

The Gel'/and spectral theory of commutative C*
algebras allows us to realize cyclic representations of 
III by multiplication operators on L!(Z), where Z is 
the spectrum of 'l{ and where It is a basic measure 
on Z.25.5 

In fact, let U(f) be a strongly continuous unitary 
representation of 3 in the Hilbert space Je, and let 
Q E Je be a normalized cyclic vector for the repre
sentation. Let 

z = g: U(3) --+ C; (V f, g E J), ,,(U(f» \ = 1, 

and ~(U(f»)~(U(g») = ~(U(f + g»}. 
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The points of Z are in one-to-one correspondence 
with the spectrum of ~{ and with the set of (not neces
sarily continuous) linear mappings t~: J ->- "Q.(mod 21T) 
according to the formula 

,(UU» = ei(t~.!). (4.1) 

Then Je can be realized as L!(Z), where the basic 
measure P satisfies 

(0., U(f)o.) = ( eiV;.f) dp(O. (4.2) 
Jz 

0. can be represented by o.(~) == I, and, for all 
<I> E L;(Z), 

[UU)<1>]W = ei(I;·f)<1>m. (4.3) 

Suppose next that we have a unitary representation 
U(J) V('Y) of J /I .J\, in Je, with 0. E Je cyclic for ~r. 

For tfJ E X, we can define an action of tfJ on Z by 
setting (tfJ*~)[U(J)] = ~(U(Jo tfJ». Let tfJ*t, = t<l-*;' 
so that (tfJ*t"j') = (t,,fotfJ). Clearly 

(tfJ2 a tfJl)*~ = tfJitfJi'· 

Now, for tfJ EX, V(tfJ) is a unitary operator in Je. Let 
0.1 = V(tfJ)o.; then 0.1 is also a cyclic vector for ~(, 

and the measure PI' defined with respect to 0.1 to 
satisfy (4.2), is a second basic measure on Z. 

It follows from the existence of the unitary V(tfJ) 
that PI and P are equivalent measures. Furthermore, 

Lexp [i(t,J)] dpIW = (0.1 , U(f)Q1) 

= (0., U(f 0 tfJ-1 )0.) 

= fzex p [i(t<l--to,,f») dpW 

= (exp (i(t,,f)] dp(tfJ*~), (4.4) Jz 
whence 

dpIW = dp(tfJn). (4.5) 

Since P and PI are equivalent, we can write 

dPI 
dpIW = dp (n dpW, (4.6) 

where (dPl/dp)W denotes the Radon-Nikodym 
derivative. 26 A measure p satisfying the property that, 
for any measurable set X, p(X) = O<=>p(tfJ*X) = 0, 
V'-/J E X, will be called quasi-invariant for JC 

Using the fact that U(f)fJ. spans a dense subspace 
of Je, we easily show that, for 'Y E L!(Z), 

[V('-/J)'Y]W = X.jJ(~)'Y('-/J*ne:~~,~')t (4.7) 

where the "multiplier" X<I-(O is a measurable complex
valued function of modulus one, which depends on 

tfJy One can verify directly that (4.3) and (4.7) define 
a representation of J II X, where, in order that 
V(tfJ2) V(tfJl) = V(tfJI 0 tfJ2), the l<j.W must satisfy, 
V \h ,tfJ2, 

X<I-.wx<l-JtfJ:n = X'h,"',W (4.8) 

almost everywhere. The choice X",a) == I, V tfJ, will 
always satisfy (4.8), though it may define a repre
sentation inequivalent to the one with which we 
started. 

In the noncyclic case, L;(Z) is replaced by 
Jz Je, dpW, with dim Je, =;6 1. '1" E Je corresponds to 
the field of vectors ('YW), with 'YW E Je,. Then 

«U(f)'Y)W> = (exp (j(t, ,f)]'YW> (49) 

and 

«V(~)'Y)W> = <X""'W'Y(~*Oe:~~;)~)Y). (4.10) 

where the "multiplier" 

X<I-.,(,):Je",.; ->- Je, (4.11) 

is a unitary operator. In the cyclic case, the unitary 
operator becomes a complex number of modulus one. 
Using the operator notation X<j."(~) instead of the 
complex number notation X<j.({)' we have instead of 
(4.8) 

X",.·,WX<I-,·",.·,(tfJn) = X""·,,,.·,W (4.12) 

almost everywhere as the equation that the multipliers 
must satisfy. 

The spectrum of the C*-algebra 2{ discussed above 
is uncomfortably large. One of the major points of 
Lew's thesis was to construct a smaller C*-algebra, 
that generated by the "tame" operators, which holds 
the U(f)'s in its weak c1osure.28 The spectrum of the 
C*-algebra turns out to correspond to the set of 
generalized linear functionals on J: that is, the set of 
all F: J ->- IR U {oo} such that F is a (not necessarily 
continuous) linear functional on some subspace of J 
and equals 00 everywhere else. As before, one can 
discuss representations of the C*-algebra in terms of 
measures on its spectrum, but even this spectrum 
is unwieldy, since its elements satisfy no continuity 
conditions. 

A modern approach, due to Gel'fand and Vilenkin,29 
utilizes heavily the topology of J. It succeeds in dis
cussing representations in terms of measures on J', 
the continuous dual of J. This is a much smaller space 
indeed than either of the spectra above. 

Therefore, we shall decide to carry out the remain
der of our investigation in this formalism. Appendix A 
is devoted to the presentation of basic definitions and 
results. Here, we abstract from the treatment of the 
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Weyl group given by Gel'fand and Vilenkin, to show 
how their formalism may be applied to 3 A J{,. The 
development is completely parallel to the Gel'fand 
spectral theory, although we are now working in a 
much smaller measure space. 

Suppose that we have a continuous unitary repre
sentation V of 3, in .re, with n E Je cyclic for the 
representation. Then 

L(J) = (n, V(f)n) (4.13) 

defines a positive definite functional on J. Further
more, L(O) = I, and L(J) is continuous in 1 by the 
continuity of the representation V. 

Therefore, L(J) is the Fourier transform of a 
cylindrical measure on (1-' 

(n, V(f)n) = r eiIF.fld/1,(F). (4.14) 
JJ' 

This equation is the analog ofEq. (4.2) in the Gel'fand 
spectral theory. From this point on, the analogies are 
self-evident. There is an isomorphism between Je and 
L!(3'), defined by n ---+ n(F) == 1 and v(J)n ---+ ei(F.f) 
and extended by linearity. V(J) is the operator of 
multiplication by eiIF.t), sometimes denoted MeilF.t) • 

Finally, consider a representation V(J)V(~) of 
JAJ{,. Define ~*;J'---+J' by setting (~*F,I)= 
(F,! 0 ~). ~* is linear and continuous in the weak 
topology of J'. 

The vector n1 = V(~)n is cyclic for V, and 

But 

Ll(f) = (nl , V(f)nl ) 

= (V(~)n, V(f)V(~)O) 

= r ei(F.t) dfll(F). 
JJ' (4.15) 

(01 , V(f)Ol) = (0, U(f 0 ~-l)Q) 

= r exp [i(F,f 0 ~-l)] dfl(F) 
JJ' 

= r exp [i(4-1*F,f)] dp(F) 
)J' 

= r e/(F.f) dp(~*F). (4.16) 
);1' 

Thus dpl(F) == dp(~*F). 
Also, from the inner product in (4.15), 

L 1(f) = L,ei(F.t' I[V(~)O](FW dp(F), (4.17) 

from which we see that dfll(F) = I [V(~)n](FW dfl(F). 
Consequently, the measures PI and fl are equivalent; 
i.e., fl is quasi-invariant for 3(,. 

Thus the representation U(j) V(~) becomes, in 
L!(J') , 

[V(f)'Y](F) = eiIF.fI'Y(F), (4.18) 

[V(~)'Y](F) = Xo¥(F)'Y(~*F)(dfl(~*F»)!, (4.19) 
dfl(F) 

where the "multiplier" Xo¥(F) is a complex-valued 
function of modulus one, depending on ~ and 
satisfying (for each pair ~l' ~2) 

X<l>2(F)x<l>1(~~F) = X<I>lo<l>2(F) (4.20) 

almost everywhere. Again, the choice XIjI(F) == 1 
satisfies (4.20), defining a representation which may 
or may not be equivalent to the one with which we 
began. 

In the noncyclic case there exists a finite or count
ably infinite family of measures {fln} on J', with Je ""' 
EBn L!n(J'), and the operator V(I) in Je corresponds 
in LZJJ') to MexP[iIP',f)]' It follows that there is a 
single cylindrical measure fl on J' and a fl-measurable 
field of Hilbert spaces JeF on J', such that 

Je ""'f®JeF dfl(F), 
J' 

(4.21) 

with U(J) corresponding to the operator of multipli
cation by eiIF.f) .29 The measure fl is equivalent to the 
transformed measure fll defined by dfll(J) = dfl(~*F), 
and dim Jep' = dim Jeo¥*F almost everywhere, for all 
~ E 3(,. 

In this noncyclic case, V(~) becomes 

«V(~)'Y)(F» = /\X<I>*F(F)'Y(~*F)(dfl(~*F»)!/\ 
dfl(F) 

(4.22) 

where XIjI*F(F):Je<l>*F ---+ JeF is a unitary operator. The 
X<l>*F(F) satisfy 

X<l>. * F(F)X<l>1*<l>2' F(~: F) = X<l>1*402' F(F) (4.23) 

almost everywhere, which is the analog of Eq. (4.12). 
It will be noted that the set X 401'o¥2 of measure zero on 

which (4.23) fails may depend on ~l and ~2 in such a 
way that the union of a family of such sets is of non
zero measure. Some of our remarks below depend 
upon our ability to find a set of measure zero, inde
pendent of ~l and <.\12' outside of which (4.23) holds. 
Techniques exist in somewhat different contexts for 
proving such a result.3o•3l However, these techniques 
are not immediately applicable to the "multipliers" 
here; for example, since our groups are not locally 
compact, Haar measure cannot be defined. Gel'fand 
and Vilenkin do not discuss this difficulty for the 
Weyl group, and the conjecture that, in general, such 
a set exists remains to be proven. 
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B. Discussion 

We have seen in Sec. 4A that the Gel'fand-Vilenkin 
formalism is the most suitable for the representation 
theory of a group such as J" J(,. The expectation 
functional LU) defines fully the representation of 
J and defines the representation of ,x, up to a phase 
"multiplier." Whenever possible, we may choose the 
cyclic vector n used in defining L(J) to be the state of 
lowest energy; thus L(J), when coupled with the equa
tion of continuity, can also contain important in
formation about the dynamics. 

In this section, we impose the requirement of 
irreducibility on a representation of J "J(,. We also 
examine the possibility of inequivalent representations 
of J "J(, arising from the "multipliers" discussed 
above. 

Let. (4.18) and (4.19) define an irreducible repre
sentatIOn of J "J(,. For FE J', we can consider the 
orbit of F under the action of J(" that is, the set 
11 = {t¥*FIt¥ EJ(,}. J' is clearly the union of an 
uncountable family of mutually disjoint orbits. 

An invariant set (for J(,) in J' is a set X such that, for 
all t¥ E J(" t¥* X = X. Any union of orbits is certainly 
an invariant set; conversely, an invariant set X can 
always be expressed as the union of a family of orbits. 

The cylindrical measure ft on J' will be called 
ergodic (for J(,) if and only if, for any measurable 
invariant set X, either ,u(X) = 0 or ft(J' - X) = o. 

Theorem 4: The representation (4.18) and (4.19) of 
J " J(, is irreducible if and only if ft is ergodic (for J(,). 

Proof' Suppose first that ,u is not ergodic (for J(,). 

Let X be a measurable invariant set with ,u(X) > 0 
and ft(J' - ~) > O. Then uK, = {'Y E L!(J') I 'Y(F) = 
0, V FE X} IS a proper nontrivial closed subspace of 
L!(J'). Furthermore, U(J)uK, s uK" and V(q,)uK, S uK, 

since X is invariant (for J(,). Thus U(J)V(q,) is not an 
irreducible representation. 

Conversely, suppose that ,u is ergodic, and let 
uK, S L!(J') be a closed invariant subspace of L!(J'). 
Then P JrL, the orthogonal projection onto uK" com
mutes with all of the U(/) and V(..jJ). SinceP t::l)mmutes 
with all of the U(I), it is a multiplication operator in 
L!(J'); P.At, = Ma(F) , where a(F) = (P .At,Q)(F). Since 
P JrL is a projection, pi = P.At, and (l(F) = 1 or 0 
almost everywhere. Let X be {FI a(F) = I}. If 
,u(X) = 0, a(F) = 0 almost everywhere, P.At, = 0, 
and uK, = {OJ. While, if ,u(J' - X) = 0, a(F) = 1 
almost everywhere, P.At, = I, and uK, = L!(J/). Since 
these are the only two possibilities, the representation 
is irreducible. QED 

Let us assume that the orbits we shall be considering 
are measurable. Then there are two ways in which a 
measure ft can be ergodic: It can be concentrated on 
a single orbit, or else every orbit can be of ft-measure 
zero. In Ref. 5, examples of both situations are dis
cussed in more general context.32 

Next we pose the question of whether (and under 
what circumstances) different systems of "multipliers" 
lead to unitarily inequivalent representations. We 
shall make the explicit assumption that Eq. (4.23) 
holds for all..jJl and..jJ2 outside of a fixed set X of 
measure zero. 

Let us write 

where the l1y are orbits, and suppose that F~ is a 
fixed element of l1y for each y E r. Unless l1y S X, 
choose F~ i X. For any point FE l1y, there exists 
..jJ E J{, such that F = q,*F~; ..jJ need not be unique. 
With each point FE J', we associate the Hilbert space 
Je}!" which is a replica of the complex numbers. If we 
are given the unitary operators X}!,(FJ):JeF ~ JeFf for 
all FE l1y, b.y $ X, then we can reconstruct X;,(G) 
for all F, G E l1y. using Eq. (4.23). In fact, XI<,(G) = 
XG(F6)-lXI<,(F~). It is clear that the xp(F~) can be 
specified independently of any algebraic condition. 

Theorem 5: Let XF(FJ) and X~,(FJ), respectively, be 
defined as above by two systems of "multipliers," 
each satisfying (4.23) outside of a fixed set of measure 
zero. 

Then X and X' define unitarily equivalent representa
tions in the Gel'fand-Vilenkin formalism if and only 
if the function (3(F) = a(Y)XF(FJ)-lX~(FV is a 
measurable function on J/, for some function a(y) 
with modulus one. 

Proof' If (3(F) is measurable, then it is easily veri
fiable from (4.18) and (4.19) that the operation 
Mp(.F) of multiplication by (3(F) defines a unitary 
eqUIvalence between the two representations. 

Conversely, if Q is a unitary equivalence, Q = 
Ma(F) for some measurable function a, with la(F)1 = 1 
almost everywhere. 

Then 

a(F)X~*F(F)a(..jJ*F) = Xq,*F(F) 

almost everywhere, whence a(FnX~(FJ)XF(Fb)-l = 
a\~"'), which is measurable. QED 

It may be remarked that the introduction of "multi
pliers" which are not identically one, in the action of 
J:'"(..jJ), corresponds to the addition of real multiplica
tIOn operators (functions of p) to the currents J(g). 
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C. The Fock Representation 

Let us consider the I-particle Fock representation, 
defined in L2(lRs) by the equations 

U(f)'Y(x) = eif(X)'Y(x), (4.24) 

V(~)'Y(x) = 'Y(~(X»[ det (~:~ (X») r. (4.25) 

Take the cyclic vector to he Q(x) = 7T- is exp (- t IxI2). 
Then 

(Q, U(f)Q) = 7T-i .' r eif(x) exp ( -lxI2) dx. (4.26) 
JR' 

Comparing (4.26) with (4.14), we conclude that f1 is 
concentrated on the family of evaluation functionals 
(or b functions) Fx defined by (Fx,f) = f(x), with 
df1(Fx) = 7T-is exp (-lxI2) dx. 

Theorem 6: We shall verify directly that the set 
{Fx I x E RS

} is a measurable set in J'; i.e., it can be 
obtained from cylinder sets by countable processes. 

Proof" Let fo(x) = exp (-t Ix12) and fj(x) = 
Xi exp (- t Ix12) be elements of J, for j = 1, ... , s. 
Let f1+l , f1+2' ... be a countable dense set in J. Let 
Ak = {(fo(x), ... ,hex»~ E IRHI I x E IRS} and 

Qk = {F E J' I «F,fo), ... , (F,h» E Ak}· 

Then Q = nr=o Qk coincides with {Fx I x E IRs}, as 
follows. Clearly, Fx E Qk for all k, and, if FE Q., 
then «F,Io), ... , (F,j.» = (fo(x), ... ,j.(x» for some 
x. But, by the definition of 10, ... ,j. , the (s + 1)-
tuple (fo(x), ... ,j.(x» determines x uniquely. Thus, 
FE Q.+m implies 

«F,fo), ... , (F,j.+m» = (fo(x), ... ,j.+m(x», 

where x is independent of m, and, if FE Q, F = Fx on 
a dense set and hence everywhere on J by continuity. 

QED 

The measurable set {Fx I x E IRs} is a single orbit in 
J' under the action of 3(" since, in fact, ~*Fx = F",(x) 

for ~ E 3(,. 

The measure associated with the 2-particle Fock 
representation is concentrated on the orbit 

{FX1 + Fx.1 Xl ~ x2} 

in J'. Similar orbits can be constructed for all of the 
n-particle representations. 

Next, we show how two inequivalent representa
tions can be constructed with the same measure on the 
same orbit, using different systems of "multipliers." 

Let x E 1R3 and 

(4.27) 

for Xl or X2 ~ o. Then la(x)12 = 1, and a( -x) = 
-a(x). In the 2-particle, 3-dimensional Fock repre
sentation, consider the unitary operator Q::res --+ :rea 
given by Q'Y(xl , x2) = a(xl - X2)'Y(Xl , x2). Then 
Q Us (f) = Ua(f)Q, but, as we have seen in Theorem 
3, we cannot have QVs(~) = Va(~)Q. In fact, 

QVs(~) = [a(x1 - x2)/a(~(xl) - ~(X2»]vaC~)Q. 

(4.28) 

Let us look at these representations in the Gel'fand
Vilenkin formalism.:res is isomorphic to L!({F

x1 
+ Fx.}) 

by the identification 

'Y(Xl' x2) = 7T-~ exp [-!(xi + x~)]'Y(FX' + Fx.). 

U.(f) and Vs(~) act in L!({Fx, + Fx.}) by the equations 

Us(f)'Y(FX' + Fx.) 

= exp {i[f(x1) + f(x 2)]}'Y(F Xl + F x.), (4.29) 

VsC~)'Y(FX' + Fx.) 

= 'Y(F "'(Xl) + F "'(x.» 

X IT [exp [-I~(Xk)12] det (Chi (Xk»)]i. (4.30) 
k=l exp (-IXkI2) ax' 

:rea is isomorphic to L!({Fx, + Fx.}) by the identification 

'Y(X1' x2) = a(xl - X2)7T-~ 

X exp [-Hx~ + x~)]'I"(FX' + FxJ 
Then Ua(f) = Us(f) in L!({Fx, + Fx.}), while 

VaC~) = [a(~(xl) - ~(x2»/a(xl - X2)]V8(~)' 

In short, Va corresponds to the system of "multi
pliers" 

while the "multipliers" for Vs are identically one. 
Thus, n-particle representations having different 

exchange symmetries correspond in the Gel'fand
Vilenkin formalism to representations having different 
systems of "multipliers." 

With 
2 

J a(g) = (20-1 L [g(xk) • V k + V k • g(xk)] in :rea, 
k=l 

(4.32) 

we may define J'(g) to satisfy QJ'(g) = Ja(g)Q. Then, 
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using (4.27), we obtain 

illustrating our remark that the introduction of 
"multipliers" which are not identically one corre
sponds to the addition of real multiplication operators 
to the currents J(g). 33 J' (g) corresponds to a "fermion" 
representation of the current algebra, acting in :Ies • 

One may verify directly that J' (g) satisfies the current 
algebra (1.10)-(1.12). 

D. The Theory in a BOX33 

Grodnik and Sharp have studied the algebra 
obtained by setting 

Pm = f e-im·"p(x) dx (4.34) 

and 

(4.35) 

where P and J satisfy (1.5)-(1.7). It follows that 

[Pm, Pn] = 0, 

[Pm,J:] = mkPm+n' 

[J~, J:] = mkJ~+n - njJ~+n. 

(4.36) 

(4.37) 

(4.38) 

A formal representation of the (Pm' In)-algebra is 
obtained by setting 

Pm = Zm, 

J Ie ~ J' a 
n = k ~kZn+t-, 

t~-oo aZt 

(4.39) 

(4.40) 

where we imagine these operators to act on some 
space of functions of infinitely many complex 
variables Zm. 

The purpose of this subsection is to put the theory 
in a box on a rigorous footing by using some of the 
representation theory which we have developed. In 
particular, we wish to identify the "space of functions 
of infinitely many complex variables." 

Let us take the "box" to be the torus rs, an s cube 
of length 2a in each spatial direction, with points on 
opposite boundaries of the s cube identified. The 
choice of the torus imposes periodic boundary con
ditions on the testing functions. Our testing-function 
space will be Coo (P), the space of real-valued, 
infinitely differentiable functions on the torus. 

A topology may be defined on Coo(P) by means of 
the infinite set of norms 

I 
alml I IIllIn = max sup 1 I(x) , (4.41) 

Iml:Sn "eTa (aX )ml ... (axs)ma 

(4.33) 

for n = 0, 1, 2,· ... Under this topology, C",,(P) 
becomes a nuclear space in the sense of GeI'fand and 
Vilenkin. 

Let 'ill be the group of all C"" diffeomorphisms 
tji: TS -->- P under composition. A "theory in a box" 
is given by a strongly continuous unitary representa
tion of the semidirect product Coo(P) /\ 'ill, where 
the semidirect product law is defined by (/' tji) -->

/otji.34 
The I-particle Fock representation is given by 

U(f)'J"(x) = ei/(X)'J"(x), (4.42) 

V(tji)'J"(x) = 'J"(tji(X)>[ det (~:: (X») r (4.43) 

on V(P). Q(x) == [(2a)S]-! defines a cyclic vector. 
Derivatives are always taken with respect to the 
system of local coordinates on the torus I' implied 
by its identification with an s cube. 

It should be mentioned that, for the theory in a 
box, the unitary equivalence between n-particle 
representations having different exchange symmetries 
breaks down even in the case of one spatial dimension 
(compare Theorems I and 3). Roughly speaking, this 
is because a flow may be found on the torus which 
exchanges any two points, while such a flow does not 
exist on the real line. 

The next two theorems are devoted to expressing 
the continuous dual of Cro(P) as a space of sequences 
of complex numbers. 

Consider the Fourier functions on P, 

(4.44) 

It is well known that if/EV(P), we can expand 

where the sum is over ml'··· , ms = - 00, •.• , 00 

and the series converges in L2(T8). Furthermore, 

em = [(2a)T! f eim.""lal(x) dx. (4.45) 

If we identify the element/in V(T") with the indexed 
set {em} of its Fourier coefficients, the requirement 
that / be square integrable imposes the requirement 
that 
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Theorem 7: Let f be a square-integrable function 
on P, and let {cm} be the indexed set of its Fourier 
coefficients. Then fE Coo(P) if and only if, for any 
polynomial P in m1 , ••• , m., 

2IP(m)12IcmI2 < 00. 
m 

We say then that Cm - 0 rapidly as m - 00. 

Proof" It suffices to show that, as an element of the 
Hilbert space V(P), f is in the domain of A = 
-i(djdxl) if and only if the series 2m mlCmf(mJ 
converges in V(P). But A is a self-adjoint operator 
in L2(P). If 2m mlcmf(mJ converges, then f is in the 
domain of A by virtue of the fact that A is dosed. 

Conversely, suppose f to be in the domain of A, 
and let Af = .2m dmf(mJ' With Iml = .2~=1 m k , 

A .2 cmf(m) = A (f - .2 Cmf(m») 
JmJ>M JmJ:SM 

= .2 [dm - (-7Tja)m 1cm]f(m) 
JmJ:SM 

+ 2 dmf(m)' (4.46) 

But, if Inl ~ M, 
JmJ>M 

( A .2 cmf(m) , flo») 
JmJ>M 

= ( .2 cmf(m) , (-7T/a)nd(OJ) = 0, (4.47) 
JmJ>~lI 

and in (4.46), for Iml ~ M, dm = (-7Tja)mlCm, As M 
is arbitrary, the series 2m m1cmf(m) converges. QED 

Requiring f to be real valued corresponds to the 
auxiliary condition em = em on the indexed set 
{cm}. Then we shall write C = {cm}. 

Theorem 8: Let F be an element of the continuous 
dual of Coo(P), and set Am = (F,f(mJ)' Then )'m is of 
polynomial growth in m; i.e., there exists a polynomial 
P(m) with IAml ~ IP(m)1 for all m. An indexed set 
{Am} of complex numbers, with Am of polynomial 
growth in m and with the reality condition Xm = A_m' 
will be denoted A. Any such A defines a continuous 
linear functional on Coo(P). 

Proof: With f = 2m cmicm) , we have 

In order for this sum to converge for all C, it is 
clearly necessary and sufficient that Am be of poly
nomial growth in m. We need only show that the linear 
functional on Coo (P) defined by A is continuous in the 
topology given by (4.41). 

Suppose that for all n, lim Ilfklln = 0 as k -+ 00, 

for hE Coo(P). Let fk = 2m c~f(m)' We shall show 
that lim (F,fk) = 0 as k - 00, where (F,h) is defined 
from A by the formula 

(F,fk) = 2 AmC~ . 
m 

It is not hard to demonstrate that the convergence of 
Ilhlln to zero, for all n, implies that 

lim suP,/2 Q(m)C~f(m)(X)12 = 0 
k-+ 00 XET m 

for all polynomials Q(m), whence 

lim2IQ(m)c~12= 0 and limsupIQ(m)c!1 = o. 
k-+oo m k-+oo m 

But then 

/2 AmC~/ ~ 2/ ~ /'IQ(m)c~1 
m m Q(m) 

~ sup IQ(m)c~I' 2 ~ I, 
m m Q(m) 

which approaches zero as k approaches infinity, Q 
being a polynomial of sufficiently high degree which 
bounds IAml. QED 

Now we can apply the representation theory of 
Gel'fand and Vilenkin. Let us first redefine 

Pm = p(f(m) = [(2a)']-lfe-im.x .. lap(X)dX, (4.48) 

J: = Jk(f(n) = [(2a)8]-1 f e-io.x .. laJ\x) dx, (4.49) 

whence the current algebra (4.36)-(4.38) becomes 

[Pm, Po] = 0, 

[Pm, J!] = (7Tja)[(2a)"]-lmkpm+o, 

(4.50) 

(4.51) 

Theorem 9: Let U be a (strongly) continuous, cyclic, 
unitary representation of C"" (P) with cyclic vector n. 
Then we can realize Pm in such a representation as 
multiplication by Am' on the space of functions 'Y(A) 
square integrable with respect to a cylindrical measure 
f-l on the dual of Coo(P). The cyclic vector may be 
realized as ileA) == l. The domain 

{'Y(A) = ~lak exp [i(A, Ck)]} 

is dense in L!(Coo(P)'), where (A, C) =.2m AmCm. 
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Proof" By (4.14), we can realize :Ie as L!(Coo(P)'), 
with Q(A) == I, and U(C)'Y(A) = ei(A,C)'Y(A), where 
p, is a cylindrical measure in Coo (P)'. In such a repre
sentation, the continuous I-parameter groups 

U(tt(j(ml + j(-ml» and U«t/2i)(j(ml - j(-ml» 

act on 'Y(A) by 

U( .. ·,O,cm = It,"'O".,cm = It,O,''')'Y(A) 

= exp [it!{.Lm + Am)]'Y(A) (4.53) 
and 

U( .. · 0 C = -t/2i ... 0 ... C = t/2i 0 .. ')'Y(A) , , -m "" m , , 

= exp {it[(2i)-\-A_m + Am)]}'Y(A). (4.54) 

The respective infinitesimal generators are (by Stone's 
theorem) the self-adjoint operators 

P;;; = teAm + A_m) = Re Am, 

P;;;' = t( Am - A_m) = ImAm . 

(4.55) 

(4.56) 

On the common domain of P;:; and P;", we immedi
ately recover Pm = p~ + ip-;;' and P-m = p;l; - ip;.. 

QED 

Theorem 9 says that the formal representation 
Pm = Am is actually a perfectly general representation 
of the Pm' The specific choice is made only when a 
cylindrical measure is chosen on {A}. 

In Sec. 5, we shall develop sufficient conditions on 
the cylindrical measure p, for the simultaneous 
recovery of all the Pm and I n on a common dense 
invariant domain, in a representation of Coo(P) A 'ill. 
The domain D turns out to include the set 

D'={'Y(A)=R(ReAm ,ImAm ,"',ReAm ,ImAm); p lIn n 

(V n)(V p E C) M(2n»(V ml , ••• ,mn)}, 

where C) M(n) is the class of complex-valued Coo 
functions of n real variables which, together with 
their derivatives of all orders, are of polynomial 
growth at 00. D' is a domain of essential self-adjoint
ness for p~ and P;", for all m. 

Under the conditions of Sec. 5, the operator J! 
can be represented on the domain D' in L!({A}) by 

J~ = - ~ _1_-t 1 tk Am+t ~ + M(Jmkc.t) CAl , 
a [(2a)8] 1=-00 OAt 

(4.57) 

where M denotes the operation of pointwise multi
plication.5 In particular, the sum 

00 a I tkAm+t- (4.58) 
t=-oo OAt 

is a well-defined operator on D', whereas the indi
vidual derivative a/OAt may not be well defined.23 

Thus the representation (4.57) is also a general 
form; the specific choice of representation is made 
when a cylindrical measure quasi-invariant under the 
group 'ill is placed on {A}. 

The I-particle Fock representation in a box corre
sponds to a cylindrical measure p, concentrated on 
the evaluation functionals in the dual of Coo (P). If 
Fx is the evaluation functional at the point x, then 

(Fx'/Cml) = Am = (2a)-t8e-im,u/a. 

Thus, in {A}, p, is concentrated on 

{A I Am = (2a)-tBe-im.u/a; X E 1R8}. 

The identity 

Am,Am. = (2a)-tBAml+m! (4.59) 

holds almost everywhere, from which we obtain the 
operator equation 

PmPn = [(2a)B]-tPm+n' (4.60) 

(4.60) may be termed the "I-particle identity." 23 

In this example, we easily see that a/oAtis not a well
defined operator, while the sum (4.58) nevertheless is 
well defined. 

The 2-particle Fock representation corresponds 
to a cylindrical measure p, concentrated on the 
functionals Fx, + Fx! with Xl =;1= X2 , and correspond
inglyon 

{A I Am = (2a)-tS[e-im,xl7Tla + e-im,x21Tla]; Xl =;1= X2}' 

Therefore the "2-particle identity" 

Am,Am2Am3 

= (2a)-tS[AmlAm2+m3 + Am2Aml+ma + AmaAml+m2] 

- 2(2a)-SAml+m2+ma (4.61) 

holds almost everywhere, or 

Pm1Pm.Pms 

= [(2a)"]-t(PmlPm2+ms + Pm.Pml+ma + PmaPml+m.) 

- 2[(2a)B]-IPml+m2+ms' (4.62) 

Similarly, the n-particle Fock representation leads 
always to an "n-particle identity." When the n
particle identity is satisfied, the higher identities are 
automatically satisfied, but the converse is, of course, 
false. 

The representations in this subsection are the 
Fourier transforms of the so-named "functional 
representations" of the (p, J)-algebra. Functional 
representations of the theory in a box are studied 
extensively by Grodnik and Sharp. 
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S. RECOVERING THE CURRENT ALGEBRA 

We have seen in Sec. 3 that, instead of representa· 
tions of the algebra of (smeared) currents, it is sensible 
to study representations of the corresponding expo
nentiated formalism. In the present section, we develop 
some sufficient conditions for the recovery of the 
current algebra to be possible in such a representation. 
The current algebra is to be recovered from the 
infinitesimal generators of I-parameter unitary sub
groups, on a dense domain in the Hilbert space. 

The sufficient conditions are expressed as properties 
of the cylindrical measure in the Gel'fand-Vilenkin 
formalism described in Sec. 4. We shall see some of 
the advantages of the Gel'fand-Vilenkin formalism 
over the other approaches mentioned in that section. 

Our development will be for the group J A J(,; 

however, it is easily generalized to include C",(T") A 

'iV, the Weyl group, etc.s Finally, we shall assume 
for simplicity that the "multiplier" XIjI.F(F) == 1. 

Then, for all f, 

[p(j), [J(gI), J(gz)]]'Y 

= [p(f), iJ(gz· Vg1 - gi • Vgz)]'Y. 

Proof" (a), (b), and (c) follow easily from Stone's 
theorem. In order to prove (d), we first demonstrate 
that 

V(tBI') I V( II) I 
I· Tt - (/)uJ' _ I' CPt - _ (I 11 )UJ' 
1m . p T - 1m . p 0 CP-t T • 

t -->0 It t-->o It 

(5.3) 
In fact, 

~~~ lIi-l[V(cp~,) - I]pe 0 CP~i - 1 + gl • V/)'f:11 
:::; lim IIV(cp~l) - Iii 

t-O 

Theorem 10: Let U(f)V(~) be a strongly continuous 
unitary representation of J A J(, in a Hilbert space:Ie. since II V(cp~,) - III is bounded and since p(f)'Y is 
Let continuous inf Also, 

and 

pU) = lim (it)-I[U(f) - I] 
t-->o 

(5.1) lim i-1[V(cp:') - I]P(gl . VJ)'f' = 0 
/-->0 

(5.5) 

J(g) = lim (iWl[V(cp~) - I] (5.2) by the strong continuity of V. Thus, 
t-->O 

be defined by Stone's theorem on domains Dp(f) and 
DJ(,) , respectively. Then, we have the following: 

(a) Let 'Y E Dp(f); then, for all A E IR, 'Y E Dp(lf) 
and p(Af)'Y = Ap(J)'Y. 

(b) Let 'YEDp(f,), Dp(f.); then 'YEDp(fl+f.) and 
PUl + f2)'Y = p(j;)'Y + P(f2)'Y· 

(c) Let 'Y E Dp(fl)' Dp{f.); also let P(f2)'Y E Dp(f,) 
and P(Jl)'Y E D p{f.) . Then [P(fl)' p(Jz)]'Y = O. 

(d) Let'Y E Dp(f) for allf, and let'Y E DJ (gl); also 
let J(gl)'Y E Dp(f) for all f, and p(f)'Y E DJ(gl)' 
Furthermore, suppose that p(f)'Y is continuous in f. 
Then, for allf, [p(f), J(gl)]'Y = ip(gl' Vf)'Y. 

(e) Let'Y satisfy the assumptions of (d) for J(gI)' 
J(Ag1), J(g2), and J(gl + g2)' Then, for allf, 

[p(!>, J(Agl)]'Y = [p(f), M(gl»)'Y, 
and 

[pet), J(gl + g2)]'Y = [p(f) , J(gl) + J(gz)]'Y. 

Let 'Y be a vector to which the three operators 
p(f), J(gl), and J(g2) may be applied successively in 
any order for all f; also suppose that p(f) and 
J(g2' Vg1 - gl' Vg2) may be applied in either order 
to 'Y. Furthermore, let p(f)'Y, P(f)J(gl)'Y, P(f)J(g2)'Y, 
and p(f)J(gz· Vg1 - gl • Vg2)'Y be continuous in f 

and (5.3) is proved. 
Then we have 

V( 11) I 
- I' CPt - (f gl)U? - 1m . p 0 CP-t T 

/-->0 It 

I
. l' V(cp~l) -I U(sfo cp~lt) - 1m = 1m 1m T 

t-->o 8-->0 it is 

= lim lim [(U(SI: - I) (V(CP~? - I) 
t-->O 8-->0 IS It 

_ ~(U(sl 0 :~t) - I _ U(sl? - I)] 
It IS IS 

= lim p(f) V( CP~? - I 'Y 
t-->o It 

- lim ~ [p(f 0 CP~t) - p(J)]'Y, (5.7) 
t-->o It 
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where V(cpN'I" E Dp(f) since 

lim U(sJ~ - I V(cp~l)'I" 
8-+0 IS 

_ I' V( 111) U(sJ 0 CP~t) - I nr - 1m CPt T, 
8-+0 is 

(5.8) 

and 'Y E D p(fo",~~) • 

In (5.7), the second term is just -ip(gl' Vf)'Y. 
The first limit, which exists since all of the other 
terms exist, converges to P(f)J(gl)qt because p(f) is 
closed. Thus 

J(gl)p(f)'Y = P(f)J(gl)'Y - ip(gl . Vj)'Y, (5.9) 

which is the result (d). 
The results in (e) are easy consequences of (a)-(d), 

by using finally the Jacobi identity. We omit the 
details. QED 

It is interesting to note that the continuity of p(f)'Y 
in f is important in recovering the commutation 
relations. 

A. Assumptions on fl 

Let us now look systematically at the consequences 
of certain assumptions on the Gel'fand-Vilenkin 
measure ft. in a representation U(f)V(~) of J I\. JC 
We shall use the Lebesgue dominated convergence 
theorem, which is included in Appendix B. 

Assumption 1: For all n and for all h, ... ,fn E J, 
the "moment" 

JI(F,Jl) 12 ... I (F,Jn) 12 dJl(F) < exp. 

Theorem 11 : Under Assumption I, there exists a 
common dense invariant domain for all of the p(f). 
The vector .0 cyclic for U(J) is in this domain. 

Proof" Let M(Sl, ... , Sn) be a monomial in n real 
variables. If 'Y(F) is essentially bounded, then 
M«F,h), ... , (F,fn»'Y(F) is square integrable. Let 

<l>t = ([U(if) - I]/it}M«F,h), ... , (F,fn»'I"(F), 

(5.10) 

and «l> = (F,f)M«F,h), ... , (F,ln»'Y(F). We argue 
that lim lI<I>t - «l>11 = 0 as t -- O. In fact, <l>t ->- «l> 
pointwise, while 1 <l>t(F) 1 ~ Ix(F) I almost everywhere, 
where 

I ei8 1 I 
X(F) = I «l>(F) I sup ~ 

selR IS 
(5.11) 

is square integrable. The result follows by Lebesgue 
dominated convergence. 

Thus M«F,h),"', (F,fn»'Y(F) E Dp(f) for all 
IE J. Taking the vector space of finite linear combi
nations of such elements, we arrive at a common 
dense invariant domain for all of the p(f). 

Since .o(F) == 1 is essentially bounded, n is in 
this domain. QED 

Assume now that we have fixed on a common 
dense invariant domain D for all of the p(J). Another 
assumption that can be made on the representation is 
the following. 

Assumption 2: For all 'Y, «l> E D, ('Y, p(f)«l» is 
continuous in/35 

Lemma 4: If Ii ->-1 and gj ->- g in J(lRB
), then 

h @gj ->-I@g in J(fR2B), where (J® g)(x, y) = 
I(x)g(y); i.e., "tensoring" is jointly continuous from 
J(fR8) X J(fRS) into J(fR28). 

Proof" The proof is elementary and may be found in 
Ref. 5. 

Theorem 12: Under Assumption 2, p(f)'I" is con
tinuous inffor all 'Y E D; i.e., the weak continuity of 
p(f) with respect to domain D implies its strong 
continuity with respect to D. 

Proof' Take 'Y E D. Since D is invariant for the p's, 
Assumption 2 implies that ('Y, p(h)p(h)'Y) is a 
tempered distribution in each variable separately. 
By Schwartz's nuclear theorem,36 there exists a unique 
tempered distribution on J( fR 28) which equals 
('Y, P(h)P(J2)'Y) when evaluated ath ®h E J(fR2s). 

Suppose then thatJi ->- fin J(fR·). Then 

II p(f,)'Y - p(f)'I"1I2 

= ('Y, p(Ji - f)p(Ji - f)'Y) -- 0 

since (Ji - f) ® (f, - I) ->- 0 in J (fR 28) by Lemma 4. 
QED 

Assumption 2 should be compared with the 
"continuity condition" for cylindrical measures, Eq. 
(A3). That condition states that if IX(Sl' ... ,8m ) is 
a bounded continuous function of m variables, then 
h 1X«F,h), ... , (F,fm» df-t(F) is continuous in the 
variable h, ... ,fm· 

With .Q E D, Assumption 2 extends the class of IX'S 

to include polynomials P(Sl, ... , Sm); for 
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which (by Lemma 4 and the nuclear theorem) is 
jointly continuous in /1' ... ,/m' 

Thus we may restate Assumption 2: 

If CX(SI' ... , Sm) is a polynomial times a bounded 
continuous function of m real variables, then the 
integral h cx«F,J;.), ... , (F,/m» dfl(F) is continuous 

in the variablesJ;.,··· '/m' 
Assumptions 3 and 4 apply to the representation V 

as well as to U. Assumption 3 simply states that J(g) 
may be applied to the cyclic vector. Ifwe let X8 (F) = 
[J(g)O] (F) , Assumption 4 states that XK is infinitely 
differentiable in a suitable sense. This strong assump
tion lets us apply polynomials in J to the desired 
domain of vectors. 

Assumption 3: Let fl~ be the measure defined by 
dfl~(F) = dfl(t\I*F). Then, for all g, 

1 [(dfl'P' )t ] lim:- - (F) - 1 
t .... o It dfl 

exists in L~(J'). 

(5.12) 

Assumption 4: Let (') M(n) be the space of complex
valued Coo functions (of n real variables) which, 
together with aU derivatives, are polynomially 
bounded. (The degree of the bounding polynomial 
can depend on the order of the derivative.) Then, for 
all g, XK(F) = f3«F,J;.), ... ,(F'/n» a.e., for some 
n, 13 E (') M(n), and /1,"',fn E J. Note that the 
number of variables n, as well as the function 13 and 
the set J;., ... '/n' may depend on g. 

Theorem 13: Let U(/) V(I./J) be a strongly continuous 
unitary representation of J A J\, in Je; let 0 E Je be 
cyclic for U(J), and let (0, U(J)O) = h ei!F.f) dfl(F) 

define a cylindrical measure fl in J', quasi-invariant 
under JC 

Let fl satisfy Assumptions 1-4 above. 
Then in the representation of J A J\, in L!(J') 

defined by 

U(f)'¥(F) = ei(F.f)'¥(F) 
and 

V(I./J)'¥(F) = '¥(t\I*F) e:;)*(F), 

there exists a common, dense, invariant domain for 
all p(J) and J(g). The cyclic vector O(F) == 1 is in 
this domain. 

Proof: The domain D will be the linear subspace 
generated by 

{f3«F,J;.), ... , (F,fn»; 

(V n)[V 13 E l'J M(n)](V J;., .. ',fn E J)}. 

Since O(F) == 1, 0 ED. Since [U(J)O](F) = ei(F.fl 

and eiS E l'J M(l), we have U(J)O ED; therefore, Dis 
dense. 

For allfE J, p(J) may be applied to elements of D, 
and p(J)'¥(F) = (F,J)'¥(F) which is again in D 
(cf. Theorem 11). It remains to show that J(g) can be 
applied to elements of D and that J(g)D s; D. 

Let f3«F,h), ... , (F,Jn» E D. Where no confusion 
can result, we shall write simply 13(" .); the three 
dots take the place of (F,h), ... , (F,fn)' 

First, we find a certain sequence f3i E l'J M(n), 
such that f3i is bounded and satisfies a Lipschitz 
condition with 13k") ~ 13(' .. ) in L!(3'). Since 
f3(SI' ... ,Sn)' abbreviated 13(8), is polynomially 
bounded, let us write 13(8) = P(8)jJl(8), where P is a 
polynomial in n variables and lim f3I (8) = 0 as 
181 ~ 00. Let PReS) E(') M(n} be defined by PR(8) = 
cxR(J8I)P(8), where cxR(181) = 1 for 181 ~ R, cxR(J81) = 
o for \8\ ~ R + ll.R, and CXR(\SI) is Coo in 8, decreas
ing in lSI for R < 181 < R + ll.R. We can demand 
that 

sup I (VcxR)(S)1 
8eIR n 

be bounded as R varies, since ll.R is not required to be 
small. 

Then IP(S) - PR(S)I ~ IP(S)I, and 

IVP(S) - VPR(8) I ~ IVP(8)1 + KIP(8)1, 

where 

K = max sup IVCXR(S)I. 
R 8GIRn 

Let Pi(S) = PR/S)Pl(S), where R; ~ 00. It follows 
that Pi is bounded and satisfies the Lipschitz condition 

where K, may be chosen independent of i, to be 

Also, 
since 

max sup IV P;(S) I. 
i 8eIR n 

f IPi("') - P(·· ')1 2dfl(F) 
J' 

~ sup IPl(S)1 2 r IPR .(-··) - P(·· ')1 2dfl(F) 
SelR n JJ.. 

~ const x J IP(· . ')1 2 dfl(F). (5.14) 

{FI~i=ll (F.I;) 12) Ri'} 

As P(- .. ) is square integrable by Assumption 1, (5.14) 
approaches zero as Ri ~ 00. 
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Our goal is to show fJ(' .. ) E DJ (Il)' and we have 
constructed fJk' .) -+ 13(' .. ) in L!(J'). Next we show 
that 13k' .) E DJ(I)' 

In fact, 

V(,,,,,Il) I 
lim T~ - 13k") 
t-+O It 

I
. (f3i«F,!l 0 cp~), ... , (F'!n 0 cpm - 13k .. ) 

= 1m 
t-+O U 

+ 13k .. ){ [ (d;;tll (F) t -1 J / it} 
+ [f3i{(F,!l 0 cp~), ... , (F,fn 0 cpm - fJl . -)1 

x {[ (d;;t& (F»)~ - 1 J/it}). (5.15) 

We must show that the limit of each term in (5.15) 
exists in L!(J'). 

Now (5.13) states that 

I f3i«F,!l 0 cp~), ... , ~~'!n 0 cp~» - 13k .. ) r 
~ C2j~II(F/j 0 CP; - fj)r. (5.16) 

But (F, (f; 0 cp~ - fJ/t) converges pointwise to (F, 
g. V!"i) by the continuity of F and in L!(J') to 
(F, g . V!"i) by Assumption 2.37 The Vitali convergence 
theorem, which is a slight extension of Lebesgue 
dominated convergence, now suffices to conclude that 
the first term of (5.15) converges to its pointwise limit 

1 n (013 . ) -:-! -' ( ... ) (F, g • VI;). 
I j=l as; 

The Vitali convergence theorem may be 
Appendix B. 

The second term in (5.15) converges 
f3i(- .. ) is bounded, while 

!~~ [ e;;'1 (F»)! - 1 J/ it = XK(F) 

by Assumption 3. 

(5.17) 

found in 

because 

(5.18) 

The third term in (5.15) is bounded in the square of 
its norm by 

C2 Jl II ~ p (I; 0 CP; - I;) [V(cp~) - 1JO r 
which converges to zero by arguing as in the proof 
of Theorem 1O(d). 

Thus 13k .. ) E DJ (II) for all g, and 

1 n 013. 
J(g)f3k .. ) = -:- ! -' ( .. ')(F, g. Vf;) 

I j=l oS; 

+ fJk . ·)XIl(F). (5.19) 

Now we show that as i -+ 00, (5.19) converges in 
L!(J') to 

1 n af3 
-:- ! - ( .. ')(F, g. Vfj) + P(· . ·)/(F). (5.20) 
I ;=J aSj 

In fact, 

I 
013 af3i I - ( ... ) - -( ... ) 
as; as; 

< I o(P - PRJ 13 I + I (P _ P ) 0131 I - as. 1 Nt as. 
1 1 

~ const X IVP(, . ')1 + const X IP(' . ')/. (5.21) 

Thus 

(5.22) 

is bounded in absolute value by an element of L~(J'), 
independently of i. Since, for each point F, the limit 
as i -- 00 of (5.22) is zero, we have Lebesgue domi
nated convergence, and the limit is zero in L!(J'). 

Finally, fJk" )Xfl(F) -+ fJ(· .. h'l( F) via Lebesgue 
dominated covergence and the fact that 

Since J(g) is a self-adjoint operator, its graph is 
closed. Hence fJ(· .. ) E DJ(/l) , and J(g)fJ(· .. ) is given 
by (5.20). It is clear from (5.20) that J(g)D £ D. 

QED 

In Theorem IO(e), the relations among the J(g) 
were only recovered up to commutation with p. Given 
the domain D of Theorem 13, it remains to recover 
them on the vector O. 

Theorem 14: Under the assumptions of Theorem 13, 
(a) J(J.g) = }.J(g), 
(b) J(gl + gz) = J(gl) + J(gz), 
(c) [J(gl)' J(gz)] = iJ(gz· Vg1 - gl· Vgz) on the 

whole domain D. 

Proof' By Theorem 1O(e) , it is sufficient to prove 
(a)-(c) on O. Let MX/l be the operation of multiplica
tion by XI(F), defined on D: 

(a) Let J'(g) = J(g) - M1.II. Then, for '¥ E D, 
J'(Ag),¥ = AJ'(g)'Y, whence 

('Y, J'(J.g) *0) = ('Y, }.J'(g)*O). 

As XK(F) is purely imaginary (a.e.), 

J(g) = i[J'(g) + J'(g)*] and J(Ag)O = }.J(g)O. 

(b) The argument is identical. 
(c) Let A = [J(gl)' J(gz)] - iJ(gz· Vg1 - gl • Vgz)· 

A is defined on D and commutes with p; therefore 
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A = MU,Q)(Fl on D. Now A* = -A; thus (AQ)(F) 
is purely imaginary (a.e.). But Xi(F) is purely imagi
nary, whence (AQ)(F) is pure real (a.e.). Therefore 
(AQ)(F) = O. QED 

Theorem 15: p(j) is essentially self-adjoint on the 
domain D of Theorem 13. 

Proof: Since U(tf)D £; D, the result follows as in 
the proof of Lemma 3, Sec. 3. QED 

B. Remarks 

(l) It is well known in the folklore of axiomatic 
field theory that when the fields can be applied to the 
vacuum state, they can generally be recovered on a 
dense domain. The above development restates the 
analogous result for nonrelativistic currents, in the 
Gel'fand-Vilenkin formalism. 

It would be interesting to investigate ways in which 
the Assumptions 1-4 might be weakened. 

(2) One may contrast the semidirect product case 
above, with the parallel development for the Weyl 
group.s A representation of the Weyl group satisfies, 
we recall, V(g)U(f) = ei(f.g1U(f)V(g), for f, g E J, 
U(f) = eirpU ), V(g) = ei1f

(g). An element g acts on J' 
by translation, i.e., F -+ F + Fg , where (Fg ,f) == 
(j, g), and one obtains, in L!(J'), 

U(f)'J!(F) = ei(F.f)'J!(F), (5.23) 

V(g)'J!(F) = 'J!(F + Fg)r: (F)t (5.24) 

where dIJ,u(F) = df-l(F + Fg) and the "multiplier" has 
been set equal to one. 29 

Then the assumption that g;(f)'J! is continuous in f 
for 'J! E D is no longer necessary for the recovery of 
the commutation relations. 

Also, the continuity of the linear functional F, 
which was used in the proof of Theorem 13, is not 
needed for the analogous result in the case of the Weyl 
group. In fact, the Gel'fand spectral theory discussed 
in Sec. 4, in which the measure space contains linear 
functionals which are not necessarily continuous, is an 
adequate framework for constructing a common 
dense invariant domain for the g;(f) and the 1T(g) in 
analogy with Theorem 13. Thus, one advantage of 
the Gel'fand-Vilenkin formalism is that it enables us 
to extend this treatment to a wider class of commuta
tion relations. 

It is not difficult to verify that Gaussian measures 
in J', which lead to "free field" representations of the 
Weyl group,29 satisfy the assumptions on f-l in Theorem 
13. 

(3) Let us show explicitly that Assumptions 1-4 on 
fl in Theorem 13 are satisfied for the I-particle Fock 
representation. First of all, 

L,l(F'/l) 12 ... I(F'/n)12 dfl(F) 

= 1T-!S r l!ix)1 2 
..• l!n(xW e-1xl ' dx < 00. (5.25) 

JR' 
Secondly, if (J.. is a polynomial times a bounded 
continuous function of n variables, then 

r (J..«F'/l)' ... , (F'/n» dfl(F) J:l' 

But, if 

lim!;' =!k in J, k = 1, ... ,n, 
i ...... 00 

then oc(/i(x),'" ,f~(x» - (J..(h(x), ... ,fn(x» uni
formly in x, and (5.26) is continuous in (It, ... ,fn). 

Thirdly, we have 

Xi(F x) = [J(g)Q](Fx) 

=!~ exp(-t 1q>~(X)12)[det (O(q>~)')J11 
i at exp (-t IX\2) oxk t=o' 

(5.27) 
which equals 

i-1[-x' g(x) + tV. g(x)], (5.28) 

using (3.10). It is not difficult to check that (5.27) 
converges to (5.28) uniformly in x, which a fortiori 
implies convergence in L!(J'). 

Finally, with 

(5.29) 

fulfilling Assumption 4. 

It is not difficult to convince oneself that the n
particle Fock representation, for which the measure 
is concentrated on 

{F E J' I F = FXl + Fx. + ... + Fx,,; x; # xk}, 

also satisfies Assumptions 1-4. 
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C. Application to the Theory in a Box 

In this subsection, we complete the discussion of 
the theory in a box, by recovering Eqs. (4.55)-(4.57) 
on the domain D' defined in Sec. 4. 

Theorem 16: Let ft be a cylindrical measure on the 
dual of C",(T8), quasi-invariant under the action of W 
and satisfying Assumptions 1-4. 

Then, in the representation of C",(P) 1\ 'W which ft 
defines, Pm and I n can be recovered on a common 
dense invariant domain D. The domain D includes 
the set 

D' = {'Y(A) = (J(Re A 1m A . .. Re A ml' ml' , mn ' 

1m Am); (V n)[V (J E t) 1I1(2n)](V m1 , ••• ,mn )}. 

D' is a domain of essential self-adjointness for p~ and 
P;" 

The J~ can be represented on D' in L!({A}) by 

1T 1 '" 0 Jk = - - -- ~ tkA t - + M k 

m a [(2ay]i t=~oo m+ OAt (Jm 0)(,0\)' 

(5.30) 

In particular, the sum in (5.30) is a well-defined 
operator on D'. 

Proof' The common, dense, invariant domain D is 
constructed exactly as in Theorem 13. Thus D is the 
linear subspace of L!(Coo(P)') generated by 

{P«F,It), ... , (F,fn»; 

(V n)[V PEt) M(n)][V It, ... ,fn E C",(P)]}. 

Choosing the It, ... ,fn from among the cosine and 
sine functions 

and 
[(2a)8]-icos [-m· x(1Tla)] 

[(2a)8]-i sin [-m . x(1Tla)] 

and identifying F with the infinite sequence A = 
{Am}, where 

Am = [(2a)sri J F(x)e-im,x1Tla dx, (5.31) 

one obtains the smaller domain D'. 
The I-parameter unitary groups (4.53) and (4.54), 

which map D into itself, likewise map D' into itself. 
Thus (as in the proof of Lemma 3), D' is a domain of 
essential self-adjointness for p~ and P;" 

Now, according to Theorem 13, the operator J(g) 
is represented on D by 

J(g){J«F,Jl)' ... , (F,Jn» 
1 n o{J 

= -:- I -( .. ')(F, g. Vfj) + (J(" ·)[J(g)Q](F). 
I 1=1 as; 

(5.32) 

Thus on D', with It ' ... ,hn and gk all of the form 
of the above cosi.ne and sine functions, we obtain 

J~{J(Re Ami' 1m Ami' ... , Re Amn , 1m Am.) 
1 n o{J 

= -: I o~ (Re Ami"'" 1m Am.) 
I 1=1 02j_l 

But 

X (F,j(m)' (m~;)(2a)-i8Sin (-mj'x~)) 
1 n a{J 

+ -:- I o~ (Re AmI' ... ,1m Am.) 
I 1=1 02j 

X (F,J(m)' (-m~~)(2a)-i8COS (-mj'x~)) 
+ (J(Re Ami' ... , 1m AmJ(J~Q)(A). (5.33) 

(F,j(m) . (m~1T/a)(2a)-is sin (- mj . x1T/a» 

= (2a)-i8m~1T/a . (2i)-I(Am+mj - Am_m) 

(5.34) 
and 

(F,J(m) . (-m~1T/a)(2a)-1s cos (-mj • x1T/a» 

= -(2a)-~Sm~1T/a . ~(Am+mj + Am_m). (5.35) 
With 

a 1( a 1 0 ) 
aAm; = 2 aCRe Am) + i a(Im Am;) , 

(5.36) 

we obtain 

which is the desired result. QED 

6. CONCLUSION 

We have examined a theory in which nonrelativistic 
quantum mechanics is rewritten in terms of the algebra 
of currents P and J, and have found that we are able 
to exponentiate the current algebra successfully. 
Instead of representations of the current algebra by 
(unbounded) self-adjoint operators, we can then 
consider unitary representations of the corresponding 
group. 

The Gel'fand-Vilenkin formalism provides a reason
ably unified framework in which to describe such 
representations. The n-particle representations of 
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ordinary quantum mechanics have been recovered
the distinction between n particles satisfying Bose 
statistics and n particles satisfying Fermi statistics 
then appears in the "multiplier" X, rather than in the 
cylindrical measure itself. 

Conditions on the measure f.l have been obtained 
which suffice to recover all of the infinitesimal genera
tors on a common, dense domain in the Hilbert space. 
We have described the theory of N particles in a box 
in this formalism and have succeeded in giving 
mathematically rigorous meaning to the formal 
representations studied by Grodnik and Sharp. 

The present reformulation of nonrelativistic quan
tum mechanics will hopefully provide guidelines for 
the study of relativistic models written entirely in 
terms of local currents,38 as well as proving suitable 
in its own right for the study of nonrelativistic prob
lems involving infinitely many particles.39 
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APPENDIX A 

This section is devoted to the presentation of basic 
definitions and results, in the Gel'fand-Vilenkin 
formalism. 29 

Definition I: Let Jel and Je2 be Hilbert spaces. The 
linear operator A :Jel - Je2 is called completely 
continuous if and only if the image of any bounded set 
is relatively compact. Equivalently, A maps weakly 
convergent sequences into strongly convergent se
quences. 

Proposition I: Let A: Jel --+ Je2 be completely con
tinuous. Then A can be written A = UT, where T is a 
positive-definite completely continuous operator in Jel 

and where U is an isometry from the range of T 
into Je2 . 

A self-adjoint completely continuous operator T has 
the property that one can choose an orthonormal 
basis 'Y1 , 'Y 2, ••• of eigenvectors of T, T'Y n = An'Y n' 

with lim An = 0 as n - 00. 

Definition 2: The completely continuous operator 
A = UT is of Hilbert-Schmidt type if and only if 

2::'=1 A~ < 00, where the )'n are the eigenvalues of T. 
For A to be of Hilbert-Schmidt type, it is necessary 
and sufficient that there exist an orthonormal basis 
'¥ n for which 2::'=1 ttA'¥ n tt2 converges. 

Definition 3: The completely continuous operator 
A = UT is called nuclear, or said to be of trace class, 
if and only if 2::'=1 An < 00, where the An are the 
eigenvalues of T. Evidently every nuclear operator is 
of Hilbert-Schmidt type. 

Definition 4: Let .AL be a countably normed space. 
.AL is called countably Hilbert if and only if each norm 
has the form Ilflln = [(f,f)n]!, where the ( , )n are 
a compatible family of scalar products on .AL. A 
countably normed or countably Hilbert space is 
understood to be complete. Let .ALn denote the 
completion of .AL with respect to the scalar product 
( , )n' .AL may be written n::'=1 .ALn. 

Proposition 2: Let .AL be a countably Hilbert space. 
Then its continuous dual .AL' may be written 
U::'=1 .AL~, where .AL~ is the dual of the Hilbert space 
.ALn · 

In .AL~ we define the norm 

IIFII-n = sup (F,f). (Ai) 
IlfJl=1 

Since .AL~ is a Hilbert space, IIFII-n is defined by a 
scalar product in ..A{,~. 

Proposition 3: A countably Hilbert space is reflexive; 
i.e., .AL" = ..A{,. 

Definition 5: Let .AL be a countably Hilbert space. 
If m ~ n, then, V fE.AL, (f,f)m ~ (f,f)n' since the 
scalar products define a compatible system of norms. 
Thus we can define T':,.:..A{,n -..A{,m as follows-let 
T':n(f) = f for f E .AL, and extend T':,. to all of ..A{,n by 
continuity. The space .AL is called nuclear if and only 
if for all n, there exists an n > m such that Tn is 

- m 
nuclear. 

Proposition 4: The Schwartz space J is a nuclear 
space. 

We continue with more definitions and results from 
Gel'fand and Vilenkin. 

Definition 6: Let .AL be a locally convex topological 
vector space, and .N' a finite-dimensional subspace 
of .AL. Let .N'o s .AL' be defined by 

.N'O = {F E ..A{,' I F I .N' = OJ. (A2) 
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XU is called the annihilator of .N'. The quotient space 
.M.,' jXO may be identified with .N", the adjoint space 
of X. 

Definition 7: Let A s; ,;1{/ jXo. Then 

xf = {FE.A{,' I F +.N'0 EA} 

is called the cylinder set with base A and generating 
subspace Xu. 

Definition 8: Let 

n = dim X = dim X' = dim .AI.,'jXo. 

The cylinder set XA has Borel base if A is Borel when 
regarded as a subset of IR n. The family of cylinder 
sets with Borel base forms an algebra of sets. 

Definition 9: The measurable sets in .A{,' are the 
elements of the a-algebra generated by the cylinder 
sets with Borel base. 

Definition 10: A cylindrical measure in .AI.,' is a 
real-valued function !-l defined on the algebra of 
cylinder sets with Borel base and satisfying (a) 
Os !-leX) s 1, V X, (b) !-l(.AI.,') = 1, and (c) if X is 
the countable union of mutually disjoint cylinder sets 
Xi with Borel base and having a common generating 
subspace xo, then !-leX) = Li~l !-l(Xi). 

Definition 11: A cylindrical measure !-l satisfies the 
continuity condition if and only if, for any bounded 
continuous function IX(S1,'" , Sm) of m real vari
ables, the function 

J(f1, ... ,fm) = r 1X«F'/l),"', (F,fm» d!-l(F) 
J~. 

(A3) 

is sequentially continuous in II, ... ,fm E.M.,. (In 
countably normed spaces, sequential and ordinary 
continuity are equivalent.) 

Definition 12: A cylindrical measure ft is countably 
additive if and only if for any cylinder set X which is 
the union of countably many mutually disjoint 
cylinder sets Xi' fleX) = !:1 fleX;). 

Proposition 5: A countably additive cylindrical 
measure can be extended to a countably additive meas
ure on the a-algebra generated by the cylinder sets 
with Borel base. Such a measure will also be called a 
cylindrical measure. 

Proposition 6: Let .;I(, be a nuclear space. Then any 
cylindrical measure ft in .A{,', satisfying the continuity 
condition, is countably additive. 

Definition 13: Let!-l be a cylindrical measure in .AI.,'. 
The Fourier transform of!-l is the (nonlinear) functional 

L(f) = I eHF
•f ) d!-l(F). 

~' 
(A4) 

Definition 14: The functional L(f) on .;I(, is called 
positive definite if and only if, V It, ... ,fm E .At and 
V AI, . . . , Am E C, 

m 

! XkAjL(fj - fk) ~ O. (AS) 
i,k=l 

Proposition 7: The functional L(f) on .At is the 
Fourier transform of a cylindrical measure on .;1(,' if 
and only if L(f) is positive definite, (sequentially) 
continuous, and L(O) = 1. 

Example: Let B(f, g) be a scalar product in .At, 
continuous in the arguments f, g. Let X be an n
dimensional subspace of .At. Define a measure !-l X' in 
X by 

!-l (X) = _1_ J e-!BU.f) df (A6) 
X' (27Tt/ 2 x ' 

where df is the Lebesgue measure in X corresponding 
to the scalar product B(f, g). Since X ~ .A{,'jXO, 
we see that !-loN defines a measure tl X' in .At' jXo. The 
tl X' in turn defines a cylindrical measure !-l in .At', by 
the formula !-l(X-}~) = tlx(A). fl satisfies the continuity 
condition. If .AI., is a nuclear space, then!-l is countably 
additive. !-l is called the Gaussian measure in .AI.,' defined 
by the scalar product B(f, g). 

The Fourier transform of!-l is 

(A7) 

Definition 15: Let .AI., be a nuclear space in which 
there is defined a scalar product (f, g). Let Je denote 
the completion of .AI., with respect to the scalar 
product. Then .At s; Je s;.At' is called a rigged 
Hilbert space. 

Definition 16: Let .At s; Je s.At' be a rigged 
Hilbert space. For g E .At, define Fg E .At.,' by (Fg,f) = 
(g,f). Thus .At., is embedded in .At.,'; in fact, .At is 
dense in .,+(,'. Now the cylindrical measure fl in .At' is 
quasi-invariant (for .At) if and only if, V g E.At." fleX) = 
o implies t-t(X + Fg) = 0 for every measurable set X. 
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Proposition 8: Let .At, s:; Je s:;.At,' be a rigged 
Hilbert space, with B(j, g) the scalar product in Je. 
Then the Gaussian measure fL in .At,' defined by 
B(j, g) is quasi-invariant, i.e., p(X + Fg) = 0 if and 
only if p(X) = 0, where (Fy,f) = B(g,f). 

APPENDIX B 

The Lebesgue dominated convergence theorem 
used in Sec. 5 is a corollary of a more general result, 
the Vitali convergence theorem, which was also 
necessary to us in demonstrating Eq. (5.15). 

Vitali Convergence Theorem: Let (X,~, f.l) be a 
measure space, and let O/;(F) E U(X, ~,p) with 
lim 0/; (F) = o/(F) as i --+ 00. Then O/(F) is an element 
of U(X, ~,p) and \10/; - o/!Ip --+ 0 if and only if: 
(a) For all E j E ~ such that lim p(Ej ) = 0 as j --+ 00, 

!~~ L}o/;(F)'P dp(F) = 0 

uniformly in i; (b) for all € > 0, there exists E. E ~ 
such that 

p(E.) < 00 and IX_E10/;(FW dp(F) < IE. 

Condition (b) is trivially satisfied if p(X) < 00, 

Corollary 1 (Lebesgue Dominated Conrergence): 
Suppose that o/lF) --+ O/(P) almost everywhere and 
100i(F)I::; 1<1> (F) 1 almost everywhere, <I> E U(X, ~,p). 
Then 0/ E U(X, ~,f.l) and 110/; - o/Ilp --+ o. 

Corollary 2: Suppose that '¥JF) --+ o/(F) almost 
everywhere and I'¥;(F)I ::; 1 <I>;(F)1 almost everywhere, 
with <I> ;(F) --+ <I>(F) almost everywhere, that <1>;, 
<I> E U(x,~, p), and that 11<1>; - <1>11 v --+ O. Then 
'¥ E U(X,~, p) and \I'¥; - '¥\lp --+ O. 

This is the corollary which implies Eq. (5.15). 
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To study the time-dependent linear oscillator, Lewis has recently introduced an auxiliary function w. 
One of the advantages of this function is that, in the adiabatic limit, a formal expansion of w in £ is 
possible (£ characterizing the slowness of the time variation). We show that, in this adiabatic limit, the 
eigenvalues of the Hill equation can be very easily deduced from w. Moreover, the computation of the 
£2n_order solution is much simpler if we use the Chandrasekhar method of higher invariants, which is 
shown to be equivalent to the Lewis expansion. Compact formulas, easy to handle on a computer, are 
obtained, and the method, which must be considered as a generalization to higher order of the WKB 
solution, is finally tested on the Mathieu equation. 

I. INTRODUCTION 

Recently, Lewis1- a has discovered a family of 
exact invariants for the equation of the time de
pendent linear oscillator 

ij + o.2(t) . q = O. (1) 

In this paper we use these results to compute the 
eigenvalues of the Hill equation. [Equation (1), n 
being a periodic function of time]. Especially inter
esting is the case where 0. is a slowly varying function 
with t (adiabatic variation). Then, we can compute 
the eigenvalues to all orders in €, where € is a small 
parameter characterizing the slowness of the variation. 
We show that in this case the Lewis method is strictly 
equivalent to the iterative method proposed by 
Chandrasekhar4 which gives, with a slight modifica
tion, a simple formula to compute the eigenvalues 
to high order in E. This formula can be iterated on a 
computer using an algebraic language such as FORMAC. 

Finally, the method is tested on the Mathieu equa
tion where results obtained by the lowest-order 
WKB method, the direct computation of the Hill 
determinant, and our method are compared. 

II. APPLICATION OF THE LEWIS INVARIANT 
TO THE HILL EQUATION 

To solve (I),an auxiliary function w(t) is introduced, 
from which we define a new function Q and a new 
variable () with 

Q = q/w, (2) 

(1) becomes 

(5) 

Although (4) is nothing but (1) plus a nonlinear 
term, the important point is that we can take for the 
solution of (4) any initial conditions. 

For the HilI equation, 0. is a periodic function with 
period T. The solution of (1) is obtained from 
Floquet's theoremS 

q = A exp (iftt)F(t) + B exp (-iftt)F( -I), (6) 

A and B are arbitrary constants and F(t) is a periodic 
function of time with period T. ft is the eigenvalue of 
the Hill equation and is usually determined through 
the solution of the so called HilI determinant. When 
o.(t) has many Fourier components we must use high 
rank determinant and we run into numerical diffi
culties. 

Introducing the initial conditions q (t = 0) = qo 
and q (t = 0) = tio in (6) and taking into account the 
fact that F(t) is periodic, we write the solution in a 
matrix form. After a little algebra we get: 

[
qT] [ COSflT i Po:~ftFO SinflT] [qol 
if T = . Po + iftF o· T ifJ 

I sm ft cos flT 
Fo 

(7) 
with 

F (t = 0) = Fo and - =Fo· (dF) . 
dt 1=0 

() = (t_l_ dt'. 
Jo w2(t') 

(3) The eigenvalues A of the matrix in (7) are solutions 
of the equation 

Provided the w(t) satisfy All - 2l cos flT + 1 = O. 

d2w 1 - + Q2(t)W = - , 
dt2 w3 

Consequently, 
(4) A = exp (±iftT). (8) 

488 
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Another way to get qT and gT from qo and go is to use 
(2) and (3) to go from q and t to Q and () and then 
to solve (5) and come back to q and t. Introducing 

we obtain 
iT 1 

0= -dt, 
° w2(t) 

[~:J = [:: w~lJ[~::n00 ~~:J 

(9) 

x [:~o ~J [~:J = (A{~:l (10) 

Computing fl is consequently equivalent to 
(I) solving for w(t) on any interval [0, T] with any 

initial condition and computing wet), w(t), and 0, 
(2) looking for the eigenvalues of the matrix (A) 

as given by (lO). 

III. CASE OF SLOWLY VARYING Q(t) 

Let us introduce explicitly the slow variation of 0 
through a small parameter €; 0 being supposed to be 
a function of the new variable u = €t: Equation (4) 
becomes 

d2w 1 
€2_ + 02(U)W = -. 

du2 w3 
(11) 

We seek solutions of the form 

w = Wo + €2W2 + €4W4 + . . . . (12) 

Introducing (12) in (11) and identifying the coeffi
cients of EO, €2, etc., we obtain 

{

wo = O-i(u), 

W
2 
= ! O-~ d2

0 _ 1. o-t (dO\2. (13) 
8 du 2 16 du) 

Notice that, in the solution of (11) as given by (13), 
we have no more the possibility to choose the initial 
conditions, which is all right since any initial con
ditions on w is permissible. 

This approximation of the solution of (4) is now a 
periodic function of t with wT = Wo and WT = wo. 
The matrix (A) takes the simplified form 

(A) = [cos.0 - sin 0wowo w~ sin 0 J 
-sm 0(W02 + w~) cos 0 + sin 0wowo ' 

(14) 
the eigenvalues of which are given by 

A2 - 2A cos 0 + 1 = O. (15) 

The solutions are 
A = exp (±i0). (16) 

Comparing (16) and (8), we see that fl is given by 

T-10 T-11T dt fl="= -
o w2 ' 

(17) 

which is the adiabatic solution (valid to all orders) 
for the eigenvalues of the Hill equation. 

If we consider only the lowest-order solution for 
wet) given by 

Wo = O-i, 
we get 

fl = T-1 iT O(t) dt, (18) 

which is nothing else but the well-known lowest-order 
WKB approximation. 

IV. RESOLUTION OF THE LINEAR OSCILLATOR 
EQUATION BY CHANDRASEKHAR METHOD 

To solve (1), Chandrasekhar4 introduced a new 
variable 11 and a new function q1 with 

dt1 = 0 
dt ' (19) 

q1 = Oiq. 

Equation (1) can be written 

(20) 

with 

O~ = 1 + O-i d
2 

O-i. (21) 
dt2 

We introduce explicitly the 0 dependence through a 
variable u = €t. We get 

0 2 = 1 + €20-1~ O-i 
1 du 2 ' 

If 0 is a slowly varying function of t, then € is small, 
and 0 1 is equal to 1 plus an €2 order term. 

Equation (20) is nothing but Eq. (1), where q, 0, 
and t have been replaced by q1' 0 1 , and t1. We can 
repeat the operation introducing new variable and 
function 12 and q2 with 

We obtain 

dt2 _ " 
- ~Ll' 

dt1 

q2 = Otq1' 

d2q2 2 
dt2 + 02q2 = 0, 

2 

(22) 

d2 (23) 
O~ = 1 + olt - 01'. 

dt~ 

Now O2 is equal to 1 plus a term of order €4, and, 
if € is small enough, the approximation O2 = 1 is an 
improvement on the preceding solution. 

The process can be iterated, and On is now equal to 
1 plus a term of order €2n. 
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Assuming that 0"+1 is I, we have to solve 

d2 

q,,+! + q = 0 
d 

2 ,,+1 
tn+l 

and to compute the new variable In+! and the different 
0" with 

0 2 - 1 A-t L A-f n - + I>.l:n_l 2 :I..l:n _l , 
dtn_1 

tn+! = f(OOl ... 0,,) dt', (24) 

The advantage of this method is that it is an 
iterative one and is more suitable for a computational 
method. 

V. EQUlV ALENCE OF THE TWO METHODS 
IN THE ADIABATIC LIMIT 

We introduce 

(25) 
Consequently, 

Eq. (30), we finally obtain 

-4 Pn + -4. Po 
Pn+! = - PI - - . (31) 

Pn Po 
But 

PI4 = Po40~ = Po4 + PoIpo' (32) 

Consequently, taking into account (32) and Po = O-!, 
we see that the recurrence formula between Pn and 
Pn+! is therefore 

-4 •• I + 102 'th A-! Pn+l = Pn Pn U WI Po = 1>.1: • (33) 

If we notice that we need only Pn (and not 0, 
0 1 , ••• , On), we see that (33) gives in a very compact 
way the solution of the Chandrasekhar high-order 
invariants; especially interesting is the fact that we 
get rid of all the intermediate changes of variables, 
Moreover, (33) strongly reminds us of the Lewis 
equation [Eq. (4)]. To solve it, we have to compute 
the series 

(34) 

-4 -402 
Pn+l = Pn n+1 ' 

Taking (24) into account, we get 

(26) In order to get the next term vn+!, we introduce (34) in 

1 d2w 
10

2
-- + 0 2 = w-4

• 
W dUll 

but 

-4 -4 (1 + o-i d
2 O-i) (27) 

Pn+1 = Pn " dt; n 

A-! _A 
~"n - , (28) 

Pn-l 

.!!:.. o-! _ !.!.. (~)!!.!... dtl . , , dtn-l 
dtn n - dt Pn-l dtl dt2 dtn ' 

d
d 0;;-1 = dd (~) P!-I = PnPn-l - PnPn-l, 
tn t Pn-l 

d
2

0 - 1 d (. , ) \I 

d2 n = -d PnPn-l - PnPn-l Pn-l, 
t" t 

d2 
10_1 .. 3 .. 2 

-2 Un = PnPn-l - PnPn-lPn-l' 
dt" 

(29) 

Plotting (28) and (29) into (27), we get 

-4 -4 ( p!.. 3 .. . 2 ) 
Pn+l = Pn 1 + -3- (PnPn-l - PnPn-lPn-l) , 

Pn-l 

-4. -4 + Pn Pn-l 
Pn+l = Pn - - -- , 

Pn Pn-l 

This is a recurrence formula, so that 

-4 -4 Pk-l Pk-2 (30) Pk = Pk-l + -- - -- , 
Pk-l Pk-2 

By substituting each time the P;', k = n, ... , 1, in 

The expansion including the term of order E: 2n+2 

of the left member is obtained by replacing w by its 
Vn approximation. Consequently, in the right member, 
we must use the vn+1 expansion; of course, the two 
terms will have the same expansion up to E:2n+2 

(included). We have 

2 1.. d2
vn + 102 _ v-4 + A 2n+4 

10 \1:1..1: - n+l 10 • 
vn du 

(35) 

Therefore, we see that, if we expand the Chandrasek
har Pn up to order E:

2n
, we obtain Vn. Then, Pn and 

Vn have the same expansion in 10. Moreover, if the 
series are convergent, P<Xl obeys (4) and, strictly, 
is equal to w. 

Now it must be pointed out that, from a practical 
computational point of view, the two methods are 
not completely equivalent. Indeed, if results are 
desired that are correct to order E: lln and that contain 
no higher-order corrections, then both the quantities 
in Eqs. (33) and (35) have to be expanded in powers 
of 10 which is a tedious analytical work. But, in fact, 
we can use results correct to order E: lln containing some 
part of the higher-order corrections. Then Eq. (33) 
directly solves this problem and so does Eq. (35), 
where we just ignore the last term AlOin+«. 

Now we have just to carry successive derivations 
and an algebraic language (as FORMAC) can be used. 
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Working on power expansion of Eq. (4), Lewis3 

has also used FORMAC to compute VI' ••• , Va. Here 
we get Po, .•. , P6' corresponding to vo, ..• , V6 , by 
using directly Eq. (33). 

Details on this computation will be published 
elsewhere. 

To come back to the Hill's equation we see that in 
the adiabatic limit the eigenvalues up to order E

2n 

(included) are given by 

ftn = T-1 iT p;.2 dt, 

with Pn given by (33). 

VI. APPLICATION: COMPUTATION OF THE 
EIGENVALUES OF MATHIEU'S EQUATION 

To test the method, we take Q2 = A - 2Q cos 2t. 
In this case (see Ref. 5) the eigenvalues are a 

solution of 

d(O) sin2 (iTT) A) = sin2 (l;.TT,u), 

where d(O) is the following determinant: 

1 _Q-
42 - A 

0 0 0 

_Q- 1 _Q- 0 0 
22 - A 22 - A 

0 _Q- 1 _Q- 0 
02 - A 02 - A 

0 0 _Q- _Q-
22 - A 22 - A 

0 0 0 _ Q- 1 
42 - A 

d(O), because of its very simple form, can be computed 
to very high order by recurrent formulas avoiding the 
round-off errors which occur with classical methods. 

The results shown on the Figs. 1 and 2 are given for 
2Q/A = 0.4 and for values of A going from 10 to 
1000. The adiabatic approximation corresponds to 
large values of A. 

We compare three results: 

(I) The lowest-order WKB solution: In this 
approximation the normalized eigenvalue ,.4 J A is 
a constant independent of A and equal, for 2Q/A = 
0.4, to 0.98959875. 

(2) The adiabatic solution ,u1 and ,u2 obtained, 
respectively, with PI and P2' 

(3) The results ,u of the direct solution of the Hill 
determinant. For A greater than 20 (A-i < 0.224), 
Fig. 1 shows ,ul and ft (,u2 cannot be distinguished 

i ry~ 
0.9897 

96~~~ _________________ ~.~~ ____ __ 

95 

94 

93 

92 

91 -Hill 

0000 Lewi5 -Chandro5ekhor 
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FIG. 1. 

from ftl)' The agreement is excellent; for A smaller 
than 40 (A-i > 0.158), Fig. 2 shows ftl' ,u2, and ft. 

An important consequence of the adiabatic approxi
mation is shown on this last figure, namely the dis
appearance of the unstable zones of the Mathieu 

J(r; 
~~ fO.99023 
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equation. In fact, this phenomena occurs for all 
values of A closed to the square of an integer, but 
for A > 36 the unstable zones are so small that they 
cannot be shown on Fig. 1. If Q/ A is small enough the 
width of each zone is of the order of A-~(QIA)v' A and 
in the adiabatic limit such an effect is totally ignored. 

On the fl curve of Fig. 2 these instable zones 
appear around A = 25 and A = 16. We notice that 
fl2 just bridges the discontinuities of the exact fl 

curve and comes back on this last curve while the 
fll approximation is definitively too large. Finally, for 
the value A < 10 the adiabatic limit has no meaning. 

We notice the large improvement of the fll approxi
mation upon the lowest-order WKB method. 
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The Reduction 0(3, 1) :::J 0(2, 1) :::J 0(1, 1) 
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We set up a representation of the principal series of the group SL(2, C) in terms of the sequence of 
nonc?mpact subgroups SL(2, C) ::::> SU(1, 1) ::::> 0(1, 1). The basis functions are just the cross-basis 
matrIX elements of SU(1, 1) between 0(2) and 00,1) bases, and we derive much material on these before 
uSi.ng.them to calculat~ the representation functions. The latter have two pairs of discrete labels distin
gUlshmg between eqUivalent representations occurring in the reduction, and these are related to two 
discrete reflection operators that are introduced in order to obtain a maximal Abelian set. 

INTRODUCTION 

In a previous paperl (to be referred to as I) we 
examined the reductions SL(2, C) :::J SU(1, 1) :::J 0(2) 
and SL(2, R) :::J 0(1, 1) and gave a complete account 
of the global properties of the irreducible representa
tions in the corresponding bases. We did not, however, 
consider the reduction in the sequence of noncom pact 
subgroups SL(2, C):::J SU(I, 1) :::J 0(1,1); while this 
has no very new features, it is of interest to see how 
our previous results combine, and so here we present 
the theory of this reduction for the principal con
tinuous series of representations. 

The interesting part of the problem is concerned 
with the basis functions we must use. There are now no 
fewer than four sets of these, distinguished by a pair 
of degeneracy labels, because each group representa
tion contains those of its subgroup twice over; and 
they are just the "cross-basis" matrix elements of 
SU(I, I) that we can label schematically 

(0(2)1 exp (iK2~) 10(1, 1». 

Much of the paper.is devoted to defining and examin
ing these functions; indeed the first two sections and 
Appendix A are devoted entirely to these preliminaries, 
and only in Sec. III do we at last discuss the epon
ymous problem. 

We achieve a formulation of the reduction that in 
principle is complete, but in practice the only coset 
class whose representation functions we can calculate 
is that one which we were unable to treat in 1. As 
expected, the asymptotic behavior of these functions 
in the complex plane of the Casimir operator (J is just 
that of I; we can also show that with this basis we do 
not obtain matrix elements of an element a ¢ SU(l, 1) 
that are simultaneously of simple behavior in both (J 

and j, thus disposing of any hopes of a "completely 
second-kind" set of representation functions. Hence, 
the main interest (or usefulness!) of the work lies in the 
cross-basis matrix elements; there are some indications 
that these may be of use in the multi-Regge theory. 

This paper is essentially a sequel to I, to which we 
refer constantly; hence all the results of that paper 
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equation. In fact, this phenomena occurs for all 
values of A closed to the square of an integer, but 
for A > 36 the unstable zones are so small that they 
cannot be shown on Fig. 1. If Q/ A is small enough the 
width of each zone is of the order of A-~(QIA)v' A and 
in the adiabatic limit such an effect is totally ignored. 

On the fl curve of Fig. 2 these instable zones 
appear around A = 25 and A = 16. We notice that 
fl2 just bridges the discontinuities of the exact fl 

curve and comes back on this last curve while the 
fll approximation is definitively too large. Finally, for 
the value A < 10 the adiabatic limit has no meaning. 

We notice the large improvement of the fll approxi
mation upon the lowest-order WKB method. 
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We set up a representation of the principal series of the group SL(2, C) in terms of the sequence of 
nonc?mpact subgroups SL(2, C) ::::> SU(1, 1) ::::> 0(1, 1). The basis functions are just the cross-basis 
matrIX elements of SU(1, 1) between 0(2) and 00,1) bases, and we derive much material on these before 
uSi.ng.them to calculat~ the representation functions. The latter have two pairs of discrete labels distin
gUlshmg between eqUivalent representations occurring in the reduction, and these are related to two 
discrete reflection operators that are introduced in order to obtain a maximal Abelian set. 

INTRODUCTION 

In a previous paperl (to be referred to as I) we 
examined the reductions SL(2, C) :::J SU(1, 1) :::J 0(2) 
and SL(2, R) :::J 0(1, 1) and gave a complete account 
of the global properties of the irreducible representa
tions in the corresponding bases. We did not, however, 
consider the reduction in the sequence of noncom pact 
subgroups SL(2, C):::J SU(I, 1) :::J 0(1,1); while this 
has no very new features, it is of interest to see how 
our previous results combine, and so here we present 
the theory of this reduction for the principal con
tinuous series of representations. 

The interesting part of the problem is concerned 
with the basis functions we must use. There are now no 
fewer than four sets of these, distinguished by a pair 
of degeneracy labels, because each group representa
tion contains those of its subgroup twice over; and 
they are just the "cross-basis" matrix elements of 
SU(I, I) that we can label schematically 

(0(2)1 exp (iK2~) 10(1, 1». 

Much of the paper.is devoted to defining and examin
ing these functions; indeed the first two sections and 
Appendix A are devoted entirely to these preliminaries, 
and only in Sec. III do we at last discuss the epon
ymous problem. 

We achieve a formulation of the reduction that in 
principle is complete, but in practice the only coset 
class whose representation functions we can calculate 
is that one which we were unable to treat in 1. As 
expected, the asymptotic behavior of these functions 
in the complex plane of the Casimir operator (J is just 
that of I; we can also show that with this basis we do 
not obtain matrix elements of an element a ¢ SU(l, 1) 
that are simultaneously of simple behavior in both (J 

and j, thus disposing of any hopes of a "completely 
second-kind" set of representation functions. Hence, 
the main interest (or usefulness!) of the work lies in the 
cross-basis matrix elements; there are some indications 
that these may be of use in the multi-Regge theory. 

This paper is essentially a sequel to I, to which we 
refer constantly; hence all the results of that paper 
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which we need are assumed, and not further discussed 
here. The notation and other conventions are to be 
found there too. 

I. ISOMORPHISMS OF THE CARRIER SPACE 
OF SL(2, R) 

We shall wish later to expand arbitrary functions on 
SU(l, 1) in terms of the cross-basis matrix elements. 
In this section we investigate the precise meaning of 
these, and in the following show that they have all the 
properties we need; but because it is rather clearer to 
work with SL(2, R), we shall carry out our calcula
tions with that group and make use of the isomorphism 
between the two to transform our results only at a 
later stage. 

Consider then the carrier space DJ of a representa
tionj of SL(2, R); we can realize this in three different 
ways of interest (I, Sec. l.l)-as functions defined 
over the real line (parametrized by x), the unit circle 
(~), or a two-sheeted hyperbola (~r)' The isomorph
isms 

u: D;(x) -+ D;(rt.), 

v: D;(x) -+ Dl~) = U D~«(3) (1) 
r 

are defined by the relations, valid for any f E Dj(x), 

(u :f)(~) = J..-21(x), x = k~, 
(v:fn~) = J..-21(x), x = h P(3, (I') 

where we have introduced the notation J..2i = 
IJ..I2i (sgn J..)w. From these we define w = vu-1 , finding 

(w-1
: 1/)(~) = J..- 2Jcpr({3), €P{3 = ka, (2) 

for any cpr E Dj({3). If the equation for (3 has no 
solution for a given ~, we define the right-hand side of 
(2) to be zero. 

These mappings (which are isometries with the 
measures d~, d~, and 2 dx) can be extended to the 
Hilbert spaces :le;, and therefore specify equivalences 
between UIR's in each space; we can illustrate them by 
the commutative diagram of Fig. 1, where the notation 
is self-explanatory. 

Now define the map S::Dj«(3) -+ Dj(~) by 

FIG. 1. The equivalences 
U, 0, and w between the 
spaces D;(x), D1(a.), and 
D,({3). 

(3) 

where the labels in parentheses indicate the space in 
which T acts. Then we can choose bases {lJim} and 
{cp~} of Dj(~) and Dj«(3) (or, more strictly, of their 
duals) and define the function 

D~,.(r) = (lJim' S:: cp~) 

= f d~lJim(a)J..2jcp~«(3), ~r = h P(3. (4) 

We shall refer to this as the cross-basis matrix element. 
It is easy to see that under the group it transforms as 

D:::,i~~{3) = eim~D:::J1meiJ1{J, (5) 

D~irrf) = :2 D~m.(r)D::',,,(rf) 
m' 

the function itself is calculated in the Appendix, and 
we find 

D~i~) = e-ii1T(i+l)DI:':,,(~ - ti7T), (7) 

D:;(~) = e-im1TD~~_,l-~), (8) 

where ~ = exp (iK2~) and the function on the right 
of (7) is that discussed in 1. These relations must be 
treated with care because of the cut structure. 

II. EXPANSION THEOREMS ON SL(2, R) 

We wish to derive orthogonality and completeness 
relations for the cross-basis matrix elements: To do so, 
we must make use of basis-independent Fourier 
transforms2 ,3 over the group. Recall that the Fourier 
Transform (FT) of an indefinitely differentiable 
functionf(r) of compact support is the operator 

T; = ff(r)T: dfl(r). 

We investigate here the operator S; = T}w-l, and find 

(S~: cpr)(~) = jf(r)J..2Jcpr«(3) dfl(r), (9) 

where ~r = h P(3. Once again, ~ and 7 are fixed, so the 
integral is over only that part of SL(2, R) where the 
parametrization exists. This can be written as 

where 

f](~' {3, 7\ j)cpr«(3) d{3, 

j(~, (3, 7\ j) = ff(~-lkEP{3)A2; dpik), (10) 

and we have set dfl(r) = d{3 dfl/(k). We shall often 
refer to the kernel J as the (cross-basis) FT. Now 
suppose thatf(r) satisfies the condition 

(11) 
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we can certainly decompose any IE Coo(r) into such 
[,n/J by a classical Fourier transform in each one
parameter subgroup, and we shall assume it done. 
Then we find 

where 
j'(rJ-, (3, T I)),n/l = ljJm(rJ-)P~({3)}'m,.(T,j), (12) 

lm,.(T,j) = Ifm/l(hP)A2i dp-z(k). 

Upon setting h P = IX;j)-l and dIJz(k) = dlX dm(;), this 
becomes at last 

J'".,.(T,j) = I dp,(r)f(r)D~,.(r), (13) 

and a trivial modification of Gel'fand's treatment2 •3 

tells us that the inversion formula is 

fer) = ~T I dp, I dM(j)}'m/l(T,j)D::'/I(r). (14) 

Combining these two relations, we find at last the 
completeness and orthogonality formulas we have 
been seeking: 

I dp,(r)D~,.(r)D~:~,(r) = t5mm,t5rT ,t5(p, - p,')t5 jll(j - n, 

~T I dp. I dM(j)D~ir)D~/I(r') = birr,-l). (15) 

The measure dp.(j) is that of [I, (2.8)J: 

f 
Iml-l 

fm(j) dM(j) = 2: (2k + l)fm(k) 
k>O 

1 l-i+ioo + -: dj(2; + 1) cot 7T(j - m)fm(j) , 
21 -!-ioo 

and the invariant integral over the group is 

I dfl(r) = (47T)-2f lTdIX L:d{3 L: d(sinh;) (16) 

under the obvious parametrization r = IX;{3, The /J 
functions in (15) are of course with respect to these 
measures. 

Notice that the completeness relation requires a 
sum over T-Iabels. This is exactly analogous to the 
expansion formulas4 for functions defined on a 
hyperboloid parametrized by a hyperbolic coordinate 
system, which are well known; and of course our 
expressions reduce to those in the spin less case m = O. 
It is worth remarking that (15) can be derived entirely 
independently by making use of Popov's methods,6 of 
generalizing the Gel'fand-Graev transform.2.4 

III. THE DECOMPOSITION 

We are now in a position to approach the main 
problem of this paper; but first we must say a few 
words about notation. It was convenient in I to use the 

same symbols for the corresponding quantities 
associated with SL(2, C) and SL(2, R), and it caused 
no confusion there; and since with the derivation of 
the expansion formulas (I5) we have concluded our 
treatment of SL(2, R) as such, we shall do the same 
here. Henceforth, the letters p and T will refer to 
SL(2, C), while the same quantities associated with 
the subgroup will be denoted rand t; the matrix k will 
be complex. We shall in fact be considering the reduc
tion SL(2, C) ~ SU(I, I) ~ 0(1,1); the group V is 
derived from R by the mapping 

M:rER = MtrM E V; M = _1_(1 i), 
J2 i 1 

but the details of this will not concern us. 
Recall then l that we established a representation 

X = (jo, 0') of SL(2, C) by the operators 

T,;: rev) = ).xj"(v'), (17) 

(18) 

where a E C, v E V, and f E Dr.' We now ask that the 
operator rp representing a boost of magnitude (3 
along the I axis, be diagonal; in conjunction with the 
covariance condition on I arising from the ambiguity 
in phase of A, this implies 

(19) 

where p. is the eigenvalue of K1 • As we anticipated, we 
need to expandj'(v) in terms of the cross-basis matrix 
elements: 

F(v) = ~ I dp, dM(j)l!~D:~o,,.(v), 

l!~ = I dp,(v)r(v)D!Jo'/I(V); (20) 

we are assured that this is sufficient because Coo(v) 
is dense in D~. 

We therefore have no fewer than four independent 
functions I~ . and it is most desirable to give these some 
interpretation. As we saw in I, the decomposition 
C ~ V corresponds to taking a section of the hyper
boloid Ha = {x 1 x~ - X2 = I} by a plane at X3 = 
const, so that 'T specifies the sign of Xo; if then we cut 
this by a further plane at X2 = const (Fig. 2), we are 
left with two hyperbolas Hi whose T-labels have the 
identical meaning, so that we might suppose that only 
a single pair of labels was required. 

However, to specify the upper-sheet values of a 
function defined over H2 and transforming under a 
given UIR of SL(2, R) or SU(1, 1) (that is, one whose 
GeI'fand transform2 is a homogeneous function on the 
cone), it is not sufficient' to give its values upon Ht: 
We need also those on the hyperbola nt, which is the 
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FIG. 2. The cross 
section x. = constant 
of the hyperboloid 
x~ - x' = I cut by 
the plane X 2 = const. 

'. 

-------=-'~--------+-- '2 

intersection of H{ with the plane X 2 = -const-or, 
equivalently, those on its reflection HI' But in the 
reduction 0(3,1):::> 0(2,1):::> 0(1,1), with which 
we are here concerned, we require an arbitrary 
function on H2-that is, one whose values on the two 
sheets are independent-because both sheets are 
needed to specify the function on Ht: And hence we 
indeed need it on all four hyperbolas Hi, HI. We 
shall label the four functions by f~(P), where 'T denotes 
(sgn xo) and tis (sgn X2)' [ 

An equivalent explanation, but with an algebraic 
rather than a geometric basis, is afforded by noticing 
that the operators corresponding to {(1, jo, j, ,u} do 
not form a maximal Abelian set: They can be aug
mented by a pair of reflections T and R that do not 
both belong to SL(2, C). With the standard homo
morphism SL(2, C) -+ 0(3, 1), we can write these as 

T:(xo, x) = (-xo, -Xl' -X2 , X3), 

R:(xo, x) = (xo, Xl, -X2 , -x3), 

and it is easy to check that except for T:jo -+ - jo these 
commute with the former operators. Clearly, T has 
the significance of a time reflection followed by a 
rotation through 7T about the 3 axis; R is just a similar 
rotation about the I axis. Adjoining these operators to 
the previous ones gives us the complete set {(1, Uol, j, 
,u, T, R}. Our basis vectors are not the eigenfunctions 
of T and R, but rather those linear combinations of 
them with definite signs of Xo and X 2 • 

It is now easy to see how the discrete series of 
SU(!, 1) enters the picture. Recall the results of I: 
We know that upon Ht only the positive discrete 
series k+ is needed to expand f(v) (in addition, of 
course, to the principal continuous series of repre
sentations), and so we find that the Fourier transform 
f~; of fr({3) vanishes on the half-line ,ut < O. Simi
larly, the lower sheet H; requires only .the negative 
series k-, and f!; vanishes for ,ut > O. 

Let us return to the representation. If we expand 
F(v) by (20), then the presence of two terms in the 

completeness relation means that we need to calculate 
a set of integral kernels labeled by all four parameters 
7, 7', t, t': 

Dxtt' () _ (-1.# TX' ,1ft') il-'t.i'I-''t' a - 'l'llt, a' 'l'1l't' 

where 

= f D:;oiV)AXDn~l-'.(v') d,u(v), (21) 

(22) 

defines, for fixed p and p', both the variable v' and the 
range of integration. In the special case a = Vo E V, it 
is easy to see using (6) and (15) that this reduces to 

Df~~:i'I-',t.(vo) = 0tt,OMU - j')D~t~:(vo) (23) 

as required, and so we need only calculate new 
functions for representatives of the three double coset 
classes! (Cl)-(C3). 

Unfortunately, the only one of these that it is 
feasible to approach is (C3): For if we choose as 
representative of this the element 0', 

0' = (cos to i sin to) = exp (j()J 1), (24) 
i sin !O cos !O 

we see that it commutes with (3 and so the ,u-Iabels will 
be unchanged-that is, (21) will contain a factor 
o(,u - ,u'). Both of the other classes will change P and 
so effectively prevent us from calculating the integral 
in any useful form. 

In Appendix B we have calculated the matrix 
element for the choice 7 = 7' = t = t' = +; the final 
expression is found in (BS), and is superficially quite 
similar to the expressions given in I for df:nt; (~). From 
this and (B8) we can obtain the remaining matrix 
elements of 0 < 0 < 7Tj2 by using the identities 

D Xtt' (0') _ 21Tiio(p+p'JD x-r - r ' (0') 
tl-'t.il-'t' - e tJl-t.il-'-t', 

DX++ ,(0') = i 1Tiio(r+r'lD x++ , (0') (25) tp.t,jp.t l-I-'-t ./-p.-t 

which we obtain by manipulation of the defining 
integrals, and the curious intertwining relation 
derived from (AI2): 

21Tiio tlDx+r () t Dx+r () ! Dx+t () e (XI-' 11-'-.il-"t a = am TI-'+,ip.'t a - (XI-' !p.+,ill't a , 
(26) 

which is valid for all a E SL(2, C). 
Now these results apply in the first instance only to 

the region 0 < e < 7T(2 because of considerations of 
the phase of A in the parametrization (22). To extend 
them to other regions we use the discrete transforms 

Dgril-'t,(e' = 7T) = itriP;Oo(,u - ,u')OJlI(l- j)Ot.-t.o,.-r" 

D XTT ' () 21TiPriU ( + ') -" (I .) -" -" !I-'t.hll' € = e u ,u ,u U M - J Utt'Ut .-r· 

(27) 
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and the two fundamental relations of unitarity and 
representation property: 

D XTr' () DXT'T (-1) 
i/lt,1'/l't' a = 1'/l't',i/lt a , (28) 

DXTT' ( ') 
i/lt.i'fl't' aa 

- " fd "d (I) XTr" ( Xr"7' , -T~t" P. M D:iflt.1fl"t" a)DZfl"t",ifltCa ). (29) 

By applying these we can obtain all the matrix ele
ments of the class (C3). 

Finally, let us consider the behavior of the ME's in 
the complex planes of I and a. Since the choice of basis 
cannot affect the decomposition C:::l V, we know 
that the a-behavior is just that found in I; hence we 
do not obtain thus a "second-kind" decomposition of 
DX«()'), as indeed is easily seen from (B3). We might, 
however, have hoped that all these matrix elements 
would be of simple behavior in I andj; but because the 
behavior of the basis functions depends upon the sign 
of ~ [see the remarks after (A9)], any integral like 
(B3), which includes in its range the point ~ = 0, will 
not have simple behavior. Since in general the defining 
integrals do contain this point, we do not find matrix 
elements of a 1= V that are simultaneously second-kind 
in I, j, and a. 

This then concludes our description of those 
problems with relatively simple solutions. Curiously 
enough, the completeness relations for the expansion 
of a function defined over a 3 + I hyperboloid 
parametrized by a Lobachevskii coordinate system 
have never been given, although the basis functions 
may be found in Ref. 4; the authors there considered 
that the absence of an azimuthal angle destroyed the 
usefulness of the system. Certainly the complications 
introduced by this reduction of the group lower our 
faith in its applicability. 
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APPENDIX A 

The Cross-Basis ME's 

It is convenient to use for these a representation 
other than (4). We take 

where 
D:!.ir) = (1m' T::/!), 

.. - u-l. 1IJ It - V-l • ./.1 
Jm - . Tm' Il - . 'fill' 

Im(x) = (1 + x2y{1 - iX}m(27T)-t, 
1 + ix 

f!(x) = 11 - x21i /1 + x lifl( -sgn X)(J)r 
1 - x 

X (277)-1:0(t - t Ixl). (At) 

X {l + l.·X}m{l + eSx}ifl dx, 
1 - IX 1 _ e~): (A2) 

and for ~ > 0 this is easily seen to be proportional to 
the analytic continuation of functions already known: 

D:;;;,(n = e-ii1fCH1) Di:.t(~ - ii7T). (A3) 

Since (A2) defines a function of ~ which is analytic 
at ~ = 0, the same holds for negative ~, with the 
proviso that the right-hand side of (A3) is continued 
from that functional form of D!-:-:(;) valid for 
~ > O. 

To find Dj-(~), we use the relation E~ = (- ~)E, 
together with 

T~: 'lfm = e
im11

'1fm' 

and obtain 
T:: cf>! = (-l)(J)1>=fl' (A4) 

D~~(~) = e-im11D~~i -~), (AS) 

which result can also be obtained by direct calculation 
after the manner of (A2). By manipulating the 
integrals, we find the identities 

D~/l(~) = (-l)""'D~m_fl(~) 

= (_l)(J)rD;;;~lt(~), (A6) 

Thus the overlap functions D:!.iO) are essentially 
just the matrix elements of a boost through i7T/2: 
Compare this with the results of Ref. 7 for those of 
SL(2, C). Because the explicit form of the D-functions 
contains half-angles, it is advantageous to make the 
substitution 

so that 
tanh ~/2 = tan 1>/2, 

-7T/2 < 1> < 7T/2; 

then we can write explicitly 

D;;;,(n 
ru + ip. + l)ru - ip. + 1) i11/2(H1) 

= e 
27Tr(2j + 2) 

x eiC.p-:r/2)(m-i/l)(2e-i'; cos 1»i+1 

(A7) 

X FU + ip. + 1,j - m + 1; 2j + 2; 2e-i .p cos 1». 
(AS) 

This is the final expression. Notice that for 1> > 0 
(that is, for ~ > 0) we take the principal branch of the 
hypergeometric function, but for 1> < 0 it passes 
through the cut onto the second sheet. For m = 0 it 
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reduces8 to the well-known functions 

which play the role of the spherical harmonics4 in the 
hyperbolic parametrization. 

The asymptotic behavior of these functions depends 
upon the sign of ~; we can see this most clearly by 
expressing the second-sheet values of F in (A8) in 
terms of its first-sheet ones, when we obtain 

Di+(I:) D-i+( 1:) + D--i-1+( 1:) mil" = C1 mil -" C2 mil -c;;, 

where the jj are given by (A8) evaluated on the 
principal branch. This agrees with the behavior of 
(A9), which we could derive by a quadratic trans
formation of the hypergeometric equation, and shows 
that for t~ > 0 the behavior is simple (that is, second
kind inj), whereas for ~t < 0 it is not. 

We can make use of the equivalence of the repre
sentations j and - j - I to obtain an interesting 
identity. Recall our discussion in I of the intertwining 
operator A: Di -+- D-i- 1 and its coefficients 

()(~ = r(j + ifl + l)r(j - ifl + 1) 

x cos 7T(ifl - Wj2)j7T, 

()(~ = -r(j + ifl + 1)r(j - ifl + 1) 

x cos 7T(j - Wj2)j7T; (AIO) 

by a short calculation we find that with the same 
normalization we have A :"P~ -+- am"P-:;,!-1, where 

am = r(j + m + l)r(j - m + 1) 

x sin 7T(m - j)e-i1T"'/2j7T; (All) 

thus the relation 

(",i Si ... I.)t) = (A 11l; S-i-1. A ..J..it ) Tm' g. 'f'Il Tm' g • 'f'Il 

gives us the two equations 

()(~D-;,.~-1-(~) = amD:(~) - ()(IlD-;,.~-1+m, 

( -1)'" I D-i-1+(I:) = Di-(I:) _ D-i- 1-(I:) ()(-Il mil " a m mil" ()(-Il mil ", 
(A12) 

which are valid on the principal series. It is not difficult 
to show that with the specific form of the intertwining 
coefficients one of these implies the other; by using 
(A8), taking care to evaluate the hypergeometric 
functions on the correct sheet,S we have succeeded in 
verifying them analytically. 

APPENDIX B 

Calculation of DX«()') 

With the parametrization €p()(~pO' = h P' ()(' t pi we 
obtain 

I tanh ~/2 - tan Oj2 
tanh ~ /2 = , (Bl) 

1 + tanh ~j2 tan Oj2 

IA21 = cos 0 + sin 0 sinh ~ (B2) 

when p = pi = 0; so that upon setting tanh ~/2 = 
tan r/>/2 and regarding the basis functions as functions 
of r/> we find 

D H + (e ') = .11"12 DU (..J..){COS (r/> - O)}"-1 
IIlt,'llt' 2 loll 'f' ..J.. 

8-,,/2 cos 'f' 

x D:!~( r/> - 8) sec2 r/> dr/>. (B3) 

To evaluate this, it is not convenient to use the form 
(AS) of the basis functions; instead we make use of8 
HTF 2.9(34) and obtain 

Di+(r/» = r(j + ip + l)r(-m - i,u) e-i1TI2<i+l) 
mil 27Tr(j - m + I) 

x ei<4>-1T12) (m+ip)(2ei4> cos r/»i+1 

X F(j + ip + l,j + nt + 1; 

m + ifl + 1; _e2i
4» 

+ (m, fl-+- -m, -fl), (B4) 

and notice that we can take the principal branch of 
this function for all ~. The hypergeometric series 
converges conditionally for all real r/> ¥= (n + 1)7T, 
and if we let Re j -+- -l - € it does so absolutely. 
Using (A6) for the complex conjugation and letting 
Re /-+- -l + €, we can integrate term by term to 
obtain at last 

H+ (J' D1p+,iP+( ) 

ru + (1 + 1)r( -I - (1) 

r(j - 1 + 1) 

x L r(j+ip+l)r(m+ip)r( -l+ip/)r( -m' -ip') 

27T2r(j-m+ or( -I+m') 

x (2 sin erl L (ip' - IMm' - l)t eW8 

t (m' + ifl' + 1) t t' 

X F(j - 1 + t + 1111 + ip1' j + (1 + 1; 

j - 1 + 1; 1 - e2i6
) 

X 4Fa(j + ip + I,j + nt + 1, -nt' - ip' - t, 

-t; m + ip + 1,1 - /11' - t + 1, 

I - pi _ t + 1, e-2i6), (BS) 
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where 
2ml = m + m', 

2fll = fl + fl', 
Imfll = Im'fl'l = Ijofll, 

and the first summation is over all four possible 
combinations of signs of m, m', fl, fl' when those of 
the products (mfl), (m'l) are held fixed. 

Now let us consider D-+ (0 < 0' < TT/2). We find 

IX~PO' = h( -IX - TT)t p, 
A,2 = cos (0 - cP - TT)/COS cP, 

where 
tan H' = cot (cP - 0)/2, (B6) 

with the notation used previously. The equation for 
cP' has the solution 

cP' = 0 - cP - TT, 
and we find 
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where both basis functions have their arguments in 
the meaningful interval (-TTj2, TT/2). By using (A5) 
we find that formally this becomes 

Dx-+ (0') 27rH0'DX++ (0' 0') (8) lllt,illt' = e lll-t,illt' ~ TT - , B 

where the right-hand side is to be interpreted as the 
analytic continuation to the region iTT < 0 < TT of the 
functional form of the matrix element D(O) appro
priate for 0 < 0 < iTT. By using this, together with the 
identities (25) (which are derived by similar manipula
tions), we can obtain explicit expressions for all the 
matrix elements of this coset class. 
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The Einstein tensor Gii is symmetric, divergence free, and a concomitant of the metric tensor g.~ 
together with its first two derivatives. In this paper all tensors of valency two with these properties are 
displayed explicitly. The number of independent tensors of this type depends crucially on the dimension of 
the space, and, in the four dimensional case, the only tensors with these properties are the metric 
and the Einstein tensors. 

1. INTRODUCTION 

In most introductions to the general theory of 
relativity, the motivation which gives rise to the Ein
stein field equations in vacuo usually involves solving 
the following problem: to seek all tensors Aii with the 
properties: 

(a) Aii is symmetric, i.e.,l 

Aii = Aii; 

(b) Aii is a concomitant of the metric tensor gab and 

its first two derivatives, Le., 2 

A ii = A ii (gab; gab,c; gab,Cd); 

(C) Aii is divergence free, i.e.,3 

Ai;li = 0; 

(d)-Aij is linear in the second derivatives of gab' 
The field equations in vacuo are then assumed to take 
the form 

Ai; = O. 
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Of these properties, (d) is usually regarded as 
crucial, and it is certainly essential when, as is custom
ary, appeal is made to the work of either Cartan4 or 
Weyl and Vermeil5 in order to conclude that 

Aii = aGii + bgii , 

where a and b are constants and Gij is the Einstein 
tensor.6 The resulting field equations would then be 
the Einstein equations with the cosmological term. 
However, none of these remarks depend on the di
mension n of the underlying Riemannian space. 

Recently, the problem of finding all tensors Aij 

which satisfy (a), (b), and (c) [without insisting on 
(d)] has been investigated.7 Although the general 
structure of A ii was found, it was given in terms of an 
iterative procedure, and no explicit formula for Aii 
was available. We briefly summarize these results. 

If we define the positive integer m by 

m = tn, if n is even, 

= t(n + 1), if n is odd, 

thenS the most general tensor Ad satisfying (a), (b), 
and (c) is given by 

(1.1) 

where cp and a are constants and eii;i,···i •• ,p = 1,'" , 
m - 1, are tensors with the following properties: 

(i) They are concomitants of gab' i.e., 

(ii) they are symmetric in ij and in i2t- 1i2t for t = 
1,2,'" ,2p; 

(iii) they are symmetric under interchange of the 
pair (i,}) with the pair (i2t-1, ;2,) for all t = 1,2, ... , 
2p; 

(iv) they satisfy the cyclic identity involving any 
three of the four indices (;,})(i2t-1, i21 ) for t = I, 
2, ... , 2p, e.g., 

(;);;;i,i.···;,. + ei,;;ii.·";,,, + () ii,;,i.·"',. = O. 

[We remark that (ii), (iii), and (iv) are not inde
pendent-in fact, (ii) and (iv) imply (iii).] 

A complicated and unwieldy iterative formula was 
given9 for calculating eii;i1 ... i 4P for p = 1, ... , m - 1, 
which we shall not repeat here. However, for fixed p 
this procedure establishes that (i)-(iv) determine 
eiJ.i1 .. ·i •• uniquely up to a constant. This uniqueness 
ensures that, if we can supply a nonzero tensor which 
satisfies (i)-(iv), then (up to a constant which can be 
absorbed in C.,) we may use it in (Ll) to calculate Aii 
explicitly. The purpose of this paper is to carry through 

this program. The resulting form for Ai; is displayed 
explicitly in a manner which very clearly demonstrates 
the role played by the dimension. 

2. DIVERGENCE-FREE TENSORIAL 
CONCOMITANTS 

For any positive integer p, I ~ P ~ m - I, we 
define the tensor 

"Pi j; j li2' "i41'-l i 4 JJ 

_ (Jiltllt! .. ·1t!P kj + bil.lh.···1t2" ki) ilkl i2k,... i'P~'2P 
- khi.· .. j,,,g kiti,,,·j2.g g g g 

(2.1) 

where bi
.li .•. ' .i!' is the generalized Kronecker delta 
JIJ2· .. J -y 

defined by 

and 

DiU'! _ 1(~i~j ~i~i)(~k~! ~k~!) 
abed - 2 UaUd + IJdUa UbUc + UcUr, • 

We will now demonstrate that !pii;i""i,. has the 
properties (i)-(iv) which we require, and is thus 
eii;i, .. ·i. p up to a constant. We shall first show that 
tpii;i1·"i •• is nonzero by proving that the same is true 
for ",ii;i1·"i'''g .. g ..... g. '. Clearly we have 

I tJ tlt2 1.4p_114p , 

If n ~ 2p + 1 (which is always satisfied for 1 ~ P ~ 
m - 1), the right-hand side of the equation reduces to 

(-l)l'2P+1n!/(n - 2p - 1)!, 

which is nonzero. 
Quite clearly conditions (i) and (ii) are satisfied by 

tpii;i,·"itp. We now turn to the remaining conditions 
(iii) and (iv) [of which (iii) is a consequence of (ii) and 
(iv)]. In view of the fact that tpii;il·"i •• is symmetric 
under interchange of the indices ;1i2;ai4 with the in
dices i4h-ai4h-2i4h-1i4h for any h, 2 S; h ~ m - 1, it 
suffices to prove (iv) for the pairs ij and i1i2. (We need 
not consider the pairs ij and iai4 in view of the obvious 
symmetry of !pii;'1· .. i • p under interchange of i1i2 with 
iai4') The fact that (iv) is satisfied is now trivially estab
lished. Consequently, in view of the uniqueness, we 
have 

(2.2) 

for 1 ~ P ~ m - I, where the b 11 are constants. 
We now wish to substitute (2.2) and (2.1) in (LI), 

which will clearly involve expressions like 
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A trivial calculation shows that 

Di .'-3i.'-2i.,-li"R 
h"-lh.,k"-lk2t ;'t-li.,-si"-2i 't 

= Rh2'-lh2tk2'-lk2t + Rh2t-lk2'_lhZ,k,t' 

If we interchange hZt- 1 and h2t and subtract, we find 

( D
i.,-si4t-,i.,-li., Di4t-a;4t-.;4t-li4')R 
"2'-lh"ku-lk,t - h2th,t-lk"-lk2t ;.,-1;.,-3i .,-,i., 

= 3Rh2t-lh2,k2t-lk2' (2.3) 

by virtue of the antisymmetry and cyclic properties of 
the curvature tensor. By noting that (2.1) can be 
expressed in the form 

ii;il"'ih = (2-1')(£;h1'''h2. ki + s;;1h l "'h,p ki) 
"p Uk1l· .. ".g Uk'l'''',pg 

ilkl. •• },pk'PCDil;.i.i. _ Dili,iai4 ) ... x g g hlh.klk. h.hlklk2 

(2.4) 

we see that (1.1), (2.2), (2.3), and (2.4) imply that 

l' 

X IT R iot-dot + agii 
h2l-1h 2t ' 

t=l 

where a and a1' are constants. It is now easy to prove 
the following. 

Theorem 1: The only symmetric tensor Aii = 
Ai;(gr.; gr •. t; gr •. tu) for which 

is 

A}= 
m-1 

Aii - 0 I} = 

~ a S;;~hl"·~'.R itizR iai •... R } •• -li. v + ab i. 
k 1'U, i1'''''. hlh. hah4 h •• -lh.. l' 

11=1 

(2.5) 

where a and a1' are arbitrary constants. 

For n = 4, the case of interest in general relativity, 
(2.5) reduces to 

A i Jl.i b Jl. iili2 R ili, 
1 = aUi + Uiili. ili2 

= ab; - 4bG}. 

We have thus recovered10 the following: 

Corollary: If n = 4 the only symmetric tensor 
Aii = Ali(gra; gr •. t; gr •. tu) for which 

is 
Aii

lJ == 0 

Consequently, if n = 4, (a), (b), and (c) imply (d) 
so that in general relativity this apparently crucial 
assumption is not required. 

By virtue of the fact thatll if n < N, then 

(2.6) 

we can express (2.5) as an infinite series, viz., 

(2.7) 

which, in fact, has only a finite number of terms de
pending on the dimension n of the space. 

3. THE ASSOCIATED LAGRANGE DENSITY 

A natural question now arises: IS12 glAii the Euler
Lagrange expression of a suitably chosen Lagrange 
density? Elsewhere13 we have shown that this question 
can be answered in the affirmative. However, the 
argument used was involved, this complication being 
directly due to the fact that an explicit form for Aii was 
not available. From (2.5) it is a simple matter to 
prove the following. 

Theorem 2: If Ail is given by (2.5), then gtAii is the 
Euler-Lagrange expression corresponding to14 

L= 

(3.1) 

Proof: It has been shown by Rund15 that the Euler
Lagrange expression Eli, corresponding to a Lagrange 
density 

(3.2) 

can be expressed in the tensorial form 

Eii - AiJ.hk + .lgiiL 2R j Ahk•il 
- Ihk 2 -"3" k th , (3.3) 

where 

.' hk oL A13· = --. 
Ogii.hk 

(3.4) 

Consequently, by means of (3.3), a knowledge of 
Aii.kk alone will enable us to calculate Eii [whereas, 
if we were to use (3.2), not only (3.4) but also oL/ogij 
and oL/Ogii,h are required]. 
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From (3.4) and (3.1) we find 

where, as before, 

D~~~~ = H~~~~ + ~~~~)(~~~~ + ~~~~). 
Covariant differentiation of (3.5) with respect to XC 

yields 
m-l 

Aab,cd = gi ~ 2p(p _ l)a bi.1"·i2.R, .i3i. 
Ic k p 31"'32. '3" Ie 

p=l 

X R, ,ioi • •.. R, ,i2._1i"gilUghtDabCd 
l51.6 1211-112:1.1 llt2ut· 

A simple argument, involving the use of the Bianchi 
identities, shows that16 for (3.1) 

Aab,cd
lc 

= O. (3.6) 

If we introduce the notation 

then, from (3.5), 
m-l 

R Aab,cd - ~ 2 Bii ru stDabCdR 
bkdall, - £. pap rsg g iiut bkda' (3.7) 

p=l 

I t is easily shown that 

so that substitution of (3.6), (3.7), and (3.8) in (3.3) 
gives 

Ei = gi(~la (~i~h1'·'h'.R itl •... R i •• -112. 
3 £. p 3 1,'''3 •• hlh. h'P-lh2. 

p=l 

_ 2pb i.h•· ... h •• R iti •... R 1 •• - 1 i 2.) + ab i ) 
31"'3.. ih. h2.-1h2. 3 • 

The right-hand side of the latter is clearly g!A~, 
which proves the theorem. 

Finally, we remark that it is not true that (3.1) is the 
most general Lagrange density giving rise to (2.5). 
For example, if n = 4, the most general scalar 
density 

L = L(g;j; gii,k; gii,kh)' 

which has giAii as its Euler-Lagrange expression, is17 

g !«(I. + R~iiR"ab + ybiikt R,.abR eel) + /JR" *Riikl 
"'Uab 'J abed 1J kl r ukl , 

where (I., {3, y, and ft are constants and *Riikl is the 
dual of R iikl • 

* This work was supported in part by a research grant from the 
National Research Council of Canada. 
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bar denotes covariant differentiation. 
• E. Cartan, J. Math. Pure Appl. 1, 141 (1922). 
5 H. Weyl, Space-Time-Matfer (Dover, New York, 1922), 4th 

ed., pp. 315ff; H. Vermeil, Nachr. Ges. Wiss. Giittingen, 334 
(1917). 

6 If Xi is any contravariant vector field, then we define the Rie
mann curvature tensor Rhi;k' the Ricci tensor R hi , the curvature 
scalar R, and the Einstein tensor Gi; by 

respectively. 

XiUk - Xi'kf == Rh'fkXh, Rki = Rh'ji, 

R = ghfRhi' and G i ; = Rif - !gifR, 

7 D. Lovelock, Aequationes Math. 4, 127 (1970). 
8 Reference 7, Theorem 4. 
• Reference 7, Theorem 3. 
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NazI. Lincei 42, 187 (1967); Proc. Cambridge Phil. Soc. 68, 345 
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13 Reference 7, Theorem 5. 
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16 The relationship of (3.6) to Lagrangians which satisfy the Euler

Lagrange equations identically has been investigated by R. Pavelle 
(private communication). 
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A calculation is given of the radiated-energy loss from a ch~rged. ro? whic? moves a~ constant speed 
past an infinite set of parallel semi-infinite conducting plates of Infinlt~slmal thlckne~s, with th~ rod taken 
parallel to and at a fixed distance from the plate edges. Th~ prob!em IS ~na.lyzed u.slng the WIener-Hopr 
technique, and the resulting formulas are evaluated analytically In the lImIts of high rod speed and low 
rod speed, and compared with numerical evaluatIOn over the full range of speeds. 

I. INTRODUCTION 

An electron ring accelerator accelerates heavy ions 
by trapping the ions in the potential well associated 
with a compact ring of relativistic electrons, and then 
accelerating the electrons by means of externally 
applied fields.! It is clear that the highly charged 
electron ring will, while being accelerated, radiate 
strongly because of its motion past the co~ducting 
surfaces of the acceleration column. ConSIderable 
theoretical effort has been devoted to determining the 
extent of this radiation, more than a dozen different 
calculations having been reported.2 

The crucial point is the dependence of the ring 
radiation, at ultrarelativistic speeds, upon ring speed. 
If, for example, the radiation were to increase with 
increasing speed, then the efficiency of an electron 
ring accelerator would decrease with increasing en~rg7 
and there would result-in practice-an upper limIt 
to the energy of the accelerator. Thus the very develop
ment of electron ring accelerators hinged upon 
demonstration that they would not be limited by 
radiation loss at high energies. 

It is easy to estimate the radiation due to acc~/era
(ion of the electron ring and to see that-at least III the 
relativistic limit-it is quite small. The radiation 
which is not small is the diffraction radiation due to the 
motion of the ring near conducting surfaces. Crudely 
speaking, one could say that image charges are being 
accelerated and hence there is radiation. It suffices to 
calculate the energy radiated by a ring moving at 
constant speed. 

If the ring is approximated by a charge Q, then the 
net energy gain per unit length of the structure can be 
written in the form 

For a charge moving at constant speed, A is propor
tional to the externally applied fields in the structure 
and is, clearly, the energy gain for an infinitesimal 
charge. The term BQ2 is, by superposition, independ
ent of the external fields on the structure; thus it may 
be calculated for an unexcited structure. It is simply 
the radiated energy loss of a charge Q moving at 
constant speed through the structure. The consider
able theoretical effort, mentioned above, has been 
devoted to determining B which is, clearly, a function 
only of charge speed and the geometry of the acceler-
ating structure. . . 

The simplest model which has been conSidered IS 
that of a charge passing through a closed cylindrical 
cavity. The radiation loss into the cavity was found to 
increase with increasing y, where y = [1 - (V2/C2)]-! 
and v is the charge speed and c the speed of light. 3 

It was suggested by Kolpakov and Kotov that a 
reasonable approximation to a cavity with entrance 
and exit ports will omit the radiation for modes with 
wavelengths less than the port dimensions. The 
radiation loss is then found to be y independent at 
large y.4 

A wave-diffraction model was employed by Lawson 
to study, more carefully, the short wavelength modes 
which were eliminated in the Kolpakov-Kotov 
approximation. Lawson found that they contribute.d 
energy loss which increased as y! at large y, and thIS 
result was obtained independently by Courant. 5.6 

There remained the possibility that the radiation 
loss to an infinite periodic array was quite different 
from the loss to a single cavity. Voskresenskii and 
Bolotovskii had derived an expression for the energy 
loss by a charged rod moving past a periodic array 
of semi-infinite planes,7 which they subsequently em
ployed to show that asymptotically the radiation varied 
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as lty at large y.B Ay-independent asymptotic depend
ence was obtained by Kuznetsov and Rubin. 9 Numer
ical evaluation of the Voskresenskii-Bolotovskii 
formula gave energy loss which fitted rather well-up 
to y ~ 3OG-a y-! dependence.1o 

Thus it seemed likely that there was not a practical 
limit to the energy of an electron ring accelerator
at least up until exceedingly high energies-and 
development programs pressed ahead in four different 
laboratories. There remained, however, the question 
of reconciling the numerical results with the asymptotic 
evaluations, and this task is accomplished in this 
paper. 

Also, clearly, the radiation loss had to be evaluated 
for structures which approximate actual acceleration 
columns. Keil has studied, numerically, a periodic 
array of cylindrical cavities connected by beam pipes.ll 

His analysis-in contrast with the work on the planar 
problem-must be cut off at short wavelengths. He 
finds energy loss which is y independent, for large y. 
The neglect of small wavelengths is supported by a 
numerical indication of convergences, and also by the 
results obtained in this paper. The difference between 
y-! and yO dependence, at large y, is presumably a 
result of infinite transverse structure dimensions vs 
finite transverse dimensions. Energy balance argu
ments, presented in Appendix B, show that in a finite 
structure the energy loss can not decrease with in
creasing y. 

Still outstanding, at the present time, are results for 
periodic structure of finite length and for slightly 
imperfect structures. Efforts are, however, being put 
into these problems.12 Rigorous analytic results for 
periodic, finite transverse dimensional structures 
would be most valuable, and hence worth the con
siderable effort they probably will demand. 

Specifically, in this paper we compute the radiative 
energy loss from a charged rod which moves at 
constant speed past an infinite set of parallel semi
infinite conducting plates. The plates are uniformly 
spaced a distance 27TL apart, and the rod moves in the 
direction of their common normal at a distance Xo 

below the plates' edges, as depicted in Fig.!. We take 
the y direction as being perpendicular to the plane of 
the figure; note that all fields and currents may be 
assumed to be independent of y. 

FIG. 1. Rod, plates, and coordinate 
system. The origin is at the edge of one 
of the plates. 
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Radiation problems with this boundary configura
tion were apparently first considered by Carlson and 
Heins.13 However, the work of these authors, and 
some later studies by Heins,14 did not consider our 
particular form of radiating source, and did not have 
occasion to compute energy losses. A problem iden
tical with ours was analyzed by Voskresenskii and 
Botolovskii. 7•8 Despite this analysis, there are two 
reasons for reconsidering the problem here. First, as 
already stated, the work of Botolovskii and Voskre
senskii is in conflict with the numerical evaluations. lO 

Secondly, it would be desirable to have expressions 
for the energy loss, valid in the limiting regimes of 
low and ultrarelativistic rod speed, in which the 
dependence upon rod speed and geometrical param
eters is transparent and from which numerical 
results readily may be obtained. 

It is to this second task, i.e., the asymptotic evalua
tion of the energy loss, that our primary attention 
will be devoted. This is accomplished in Secs. 3 and 4. 
We first of all, however, derive in Sec. 2 the formal 
solution to the boundary value problem, both in order 
to correct an error in Ref. 7 and for the sake of 
completeness. Finally, the modifications required to 
treat a slightly different situation, in which the charged 
rod is replaced by a moving current, are briefly 
considered in Appendix A. 

The main results of our analysis are the formal 
expression of Eqs. (34) and (36), the asymptotic 
formula of Eqs. (64)-(67), and the low-speed formula 
of Eq. (100) (with Fig. 5). Comparison between the 
asymptotic formulas, which have a dominant y-i 
dependence, and direct numerical evaluation of Eqs. 
(34) and (36) is presented in Fig. 4. The results for a 
current-carrying rod are given in (A8) and (A9). 

2. SOLUTION TO THE BOUNDARY VALUE 
PROBLEM 

It follows from Maxwell's equations that the electric 
field & and current density J satisfy 

oJ 02& 
V x (V x &) = -47T - - - . (1) ot ot2 

(We use Gaussian units but set the light speed c = 1.) 
Here the left-hand side is 

_V2& + V(V. &) = _V2& + V(47Tp). 

But the charge density p satisfies op/ot + V • J = 0, 
so that, by differentiating Eq. (1) with respect to time, 
we may obtain an equation in which p does not 
appear: 

E.[_V2& + ~ &] = 47T[V(V, J) - 02
JJ. (2) at of af 
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It suffices to solve the x component of this equation: 

0(0
2 

0
2 

(
2

) it ot2 - OX 2 - OZ2 E", 

= 47T - J. + - - - J",. (3) [ 
02 ( 0

2 
(

2
) ] 

oxoz ox2 ot2 

Here the unknowns are 6", and the induced surface 
current J"" since Jz is given in terms of the motion of 
the charged rod. In fact, if the rod has speed v and 
charge per unit length q, 

Jz = qvb(x + xo)b(z - vt). (4) 

We have in addition the boundary condition that 6", 
vanish on the surface of each (infinitely conducting) 
plate, 

6"'/'=21Tn], = 0, X > 0, (5) 

from which relation, together with the obvious fact 
that 

J",I.=211nL = 0, X < 0, (6) 

it is evident that our problem is amenable to the 
Wiener-Hopf technique. 

More specifically, the situation here differs from the 
usual Wiener-Hopf problem only in the periodicity 
of the mixed boundary conditions (5) and (6). This 
difference is conveniently dealt with by noting the 
symmetry 

6.,(Z, t) = E",(z + 27TnL, t + 27TnL/v), (7) 

which suggests for 6x the appropriately modified 
Fourier representation 

6", = 1... ~ fa) dw exp [iW(~ - t)]einzIL6n(X, w). 
27T n=-oo -0') V (8) 

Here and below, w should be assumed to have a small 
positive imaginary part, so that only outgoing waves 
are obtained. The currents, which possess the same 
symmetry, (7), as 6x , may be similarly expressed: 

0') 

J", = 27TLj(x, z - vt) ~ b(z - 27TnL) 
n=-OO 

= ~ f foo d(uj(x,w)exp [iW(~ - t)JeinzIL, 
27T -00 -0') v 

(9) 
1 00 roo 

Jz = 27T X L!wqbnQb(x + Xo) 

x exp [iW(~ - t) }inzIL. (10) 

Upon substituting these representations into Eq. (3) 
we find that En and j must satisfy 

[~ + w 2 
- (~ + ~)2JEn(X' w) 

ox2 v L 

= 47T(W2 + ~)j(X' w) + 47Tq 0noo'(x + xo)' (11) 
iw ox2 v 

The boundary conditions (5) and (6) now take the form 
00 

~ t:n(x, w) = 0, x > 0, (12) 
-00 

j(x, w) = 0, x < 0. (13) 

The system (11)-(13) may be solved by-essentially 
-the conventional Wiener-Hopf technique. I5 We 
first Fourier-transform in x, according to the con
vention 

j(k) = i: dxf(x)e- ikX 
, 

and note that Eqs. (12) and (13) imply analyticity 
properties for the transformed functions. Thus Eq. 
(II) becomes 

«(J(~ + k2)t;,,(k, (I) = - :7T (w 2 
- k2)J""-(k, w) 

IW 

(14) 

where 

(J(n == [(w/v + n/L)2 - w2]! (15) 

is defined to have a positive real part. The subscript on 
.1""- serves to remind us that this function must, by Eq. 
(13), be analytic (in k) in the half-plane 1m (k) < 0. 
Similarly Eq. (12) implies that the function 

E+(k) ==~~n(k, w) 
-00 

is analytic for lm (k) > O. But, from Eq. (14), 

47Tiq keik"'o 
E+(k) = - ---k~ 2 

v + (J(o 

47Ti 2 2 
- - L(k, w)(k - w)VCk), (16) 

OJ 

where 

. ~ 1 
V(k) == ~ -.-2 ' 

-00 k" + (J(n 
(17) 

so that both the unknown functionsL and E+ may be 
determined from their analyticity properties, as follows. 
We suppose there exist functions V+Ck) and V_Ck) 
such that: 

(i) V+(k) [V_(k)] is analytic and nonzero in the 
half-plane 1m (k) ;::: 0 [1m (k) SO]; 

(ii) both the V±(k) have at most polynomial growth 
for large k; 

(iii) V+(k)V_(k) = V(k). 

We will compute the V±(k) explicitly below; for the 
present it suffices to note that they have the asymp~ 
totie behavior 

V±(k) .-...; k-i for k ->- 00, 1m (k) ~ 0, (I 8) 
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and that they evidently allow us to rewrite Eq. (16) 
in the form 

E+(k) (k .) 47Tiq ke
ikfeo 1 

-- - IIX + -- --
V+(k) 0 v (k + ilXJ V+(k) 

= _ 47Ti (k2 _ m2)(k - ilXoH_(k)L(k). (19) 
m 

Since the left (right)-hand side of this equation is 
analytic in the upper (lower)-half k plane, it defines, 
by analytic continuation, an entire function. That the 
entire function must be a polynomial-of degree one 
at most-follows from Eq. (I8) and the fact that, for 
physically acceptable fields and currents, E+ must 
vanish for large k. Thus we have, in particular, 

L(k) = im Ao + A1k (20) 
47T (k2 

- m2)(k - ilXo)V_(k) 

The constants Ao and Al are easily determined. We 
recall that m has a small positive imaginary part, so 
that Eq. (20) is consistent with the analyticity property 
of i- only if Ao + Alk = B(k + m); and the left-hand 
side of Eq. (19) may be evaluated at k = iIXo to yield 

27Tiq e-aozo 1 
B=----

v (m + i<xo) V+( i<xo) 

Finally then, using Eq. (14), 

6,,(k, m) 

47Tiq keikfeO 

= - -- b"o k2 + 2 
V <Xo 

27Tiq e-aozo(k + m) 
+- . 

v (m + i<Xo)V+(ilXo)(k2 + <x!)(k - i<Xo)V_(k) 

(21) 

We recognize the first term here as the infinite space 
solution. Hence the x component of that field, &$' 
which arises purely from the surface currents in the 
plates, is given by Eq. (8) and 

iqioo 

E",(x, m) = + - dk 
v -00 

x (m + iIX0)V+(iIXo)(k2 + <x!)(k _ i<Xo)V_(k)' (22) 

Note that, for x < 0, the integral over k is entirely 
trivial. In particular, 

E.,,(-xo, m) 
7Tq e-(ao+a"lfeo( m - i<x ) 

= - - " . . (23) 
v (m + ilXo)V+(ilXo)IX..(lXo + <x,,)V_( -ilX,,) 

We have now solved Eqs. (3)-(6), except for the 
determination of V+ and V_. We will not examine the 
field structure here, but will restrict our attention to 

computing the rate of energy loss, W, to the plates. 
This quantity must equal the power needed to move 
the charged rod through the field due to the plates: 

W = - J J.&.Z<x, z, t) dx dz 

= -qv&sZ< -Xo, vt, t). (24) 

Note that at any point not on the plates V • &s = 0, 
so that for such points the Fourier components [in 
the representation of the form (8») of &8Z may easily 
be related to those of &s:t' In this way Eq. (24) becomes 

W· = ~ ~ 100 
dmei"vtlL IX" & (_ ) 

~ s" xo, m . 
27Ti "=-00 -00 (m/v + niL) 

(25) 
Of primary interest is the time-averaged energy loss, 
to which only the n = 0 term in Eq. (25) contributes. 
We denote the average energy loss per plate by q2U, 
that is, 

u == 27TL lim! rT 
Wdt. 

q2v T-+oo T Jo 
Equations (23) and (25) give 

U = - iLv roo dm ~ &so( -Xo, m) 
q 1-00 m 

7TiL roo dm e-2aOfeO (m - ilXo) 1 

= 2" Loo -; --::- (m + ilXo) V+( i<xo)V_( - ilXo) . 

(26) 
We now turn our attention to the explicit Wiener

Hopffactorization of V(k). This may be accomplished 
by a conventional procedurep·14 We first of all 
decompose each term of the right-hand side of Eq. 
(17) into partial fractions 

[niL + miL ± (m2 - k2)t]-1. 

Using then the identity 7T ctn 7Ta = l (n + a)-l, we 
find 

V(k) _ 7TL 
- 2(m2 - k2i 

sin 27TL(m2 - k2)t 
X ---------,~-~----------~ 

sin 7TL[m/v - (m2 
- k2)t] sin 7TL[m/v + (m2 - k2if 

But15 
(27) 

sin 27TL(m2 _ k2)t 

27TL(m2 _ k2)t 

=ll 1--~--"-00 [ 4IJ(m2 
- k2)] 

n=l n2 

= ft (-i 2~){k + {C:Y -m2r}e'2kL'" 

X ft (i 2:){ k - ;[ c~r -w2r}e-i2kL,,,, (28) 
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where the ±ie+i2kL/n factors have been inserted so as 
to make each infinite product converge separately. In 
a similar manner we obtain 

2 sin 7TL[; - (0)2 - e)l] sin 7TL[; + «(1)2 - k2iJ 

= 27T2L2(k + j~o)(k - i~o) 

x f!.(-l)(~r(k + i~n)(k + i~_n)ei2kL/n 

x IT (-1) (!::.)2(k - iocn)(k - i~_n)e-i2kLln. (29) 
n=1 n 

Upon substituting the representations (28) and (29) 
into Eq. (27), one may by inspection obtain a factor
ization 

V(k) = V"+(k)V_(k) 

in which the factors 

~) 1 nO? (2ni){k+i[(n/2L)2- W2]!} V (k = - -"---C--=-'----'---_~ 

+ (k + i~o) n=1 L (k + j~n)(k + i~_n) 
(30) 

and 

~ . 1 n°O ( 2ni) {k - i[(n/2L)2 - oil!} 
V _\ k) = - - -'---"'::"':"-'--. -'--_--=-...0: 

(k - j~o) n=1 L (k - i~n)(k - iccJ 

(31) 

clearly have the desired analyticity properties. These 

Then 

factors are, however, unsatisfactory because they are 
not polynomial bounded for large k. 16 In fact, 

V±(k)""" 2±2ikLk-l, k -->- 00, 1m (k) ~ O. (32) 

[The relation (32) can be seen to follow from Eqs. (30) 
and (31) by noting the identity 

n [1 + (z/n)]e-z/n = [r(z)zeCZ]-l 
n 

and recalling that r(z),...,., e-zz'-k for large zY] A 
proper choice for the V±(k) is obviously 

(33) 

which functions clearly have the asymptotic behavior 
we anticipated in Eq. (18). 

We substitute the results (30)-(33) into Eq. (25), 
and obtain for the average energy loss per plate (per 
unit charge squared) the expression 

V 27TL 'i
oo 

d 10) I [21WI xoJ(W - iC1.o) = -I w-exp - ---
vy -<Xl W vy (m + i~o) 
x [2-2IWILIVYIT (C1.0 + C1.n)(~O + C1._n ) L J2. 

n=l {~o + [(n/2L)2 - w 2]1} 2n 

Here y is the relativistic factor (l - v2)-l and we have 
noted, from Eq. (15), that C1.0 = Iw//vy. It is convenient 
to replace the integration variable by A == wLlv and 
to introduce the abbreviation 

V = 27Tii<Xl dA ~ exp [-211.1 xo] (YVA - ~ IAI)p2(A' y). 
y -00 A Ly YVA + I I A I 

(35) 

Recalling now that w-and hence A-is to be con
sidered as having a small positive imaginary part, we 
find that P( -A, y) = P*(A, y). This guarantees that V 
is real and positive, and allows us to rewrite Eq. (35) 
in the more convenient form 

V = -1m 47T(1 - i/VY) roo dA 
y 1 + i/vy Jo 

x exp [ -21. :;Jp 2(A, y). (36) 

The integral in Eq. (36) has been evaluated numer
ically with the help of Schroeder.Io The remainder 
of this report will be devoted to an analytic evaluation 
of V, for each of the two limiting situations y » 1 and 
Y ~ 1. Spe~ifically, in the case of large y we will derive 

a closed form asymptotic expression which is correct 
to O(r-i ). In the opposite limiting case our expres
sion for V will involve a very easily (but non
analytically) evaluated integral, and will be correct 
to O(v2). In both cases a systematic means of obtain
ing more accurate expressions will be clear, but the 
labor seems unjustified, especially since our results 
compare well with the numerical evaluation. 

3. ENERGY LOSS FROM AN ULTRARELATIV
ISTIC ROD 

Considering first the case of large 'Y, we begin with 
the observation that 

P(A, 00) = 1, (37) 

as is evident from the definition, Eq. (34). Thus our 
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procedure will be to let 

zO., y) == 2 In P(}., y), (38) 
and expand 

p2 = 1 + z + z2f2! + z3f3! + .... (39) 

Our first task, then, is to derive a sufficiently accurate 
expression for z. The definition, Eq. (38), may be 
substantially simplified if we use Eq. (37) to write 

P(}', y) = P(I., y)/P(J., C1J). (40) 

One term in the logarithm of Eq. (38) is 

In {; + [(n/i.)2 - 2(n/J.) + I/y2rl} 

- In [(1I/i.)2 - 2(n/I.)]! 

= sinh-1 y[(n(I.)2 - 2(n/J.Wl , 

and the other terms may be treated similarly. We find 

FIG.2. Branchcuts 
and integration con
tours in the complex 

'" plane. 

1m (</» 

I 

I':' s- B ranch II 
/ cufs-~ / 

I ... / , / , / 

Re (4)) 
.-' ...,., 

o r 2. 
c

2
) 

Since x E (R(2, R) is arbitrarily large, we may replace 
the integrand by y-l(X2 - I)-i, whence 

1'" (11) 2; dnF - = ~ In 2. 
o I. I' 

(43) 

Using also the relation 

z{l.) = -4 ~ In 2 + 2~J(~), 
y n=l I. 

in which the path C = C1 + C2 remains below the 
(41) branch points of F as in Fig. 2, we find 

where 

Fe 4» == sinh-1 1 l + sinh-1 1 1 

1'(4)2 - 24»" 1'(4)2 + 24»" 

- sinh-1 2 .1' (42) 
)'(4)2 - 4)2 

Because of Eq. (36) we may restrict our attention to 
Re p.) > 0. Recalling our convention 1m (J.) > 0, we 
see that the relevant singularities of F(4)) occur in the 
upper-half 4> = (n/;.) plane, at 

4> = I ± (l - l/y2)t + iO, 

4> = 2(1 - l/y2)} + iO, 

4> = iO, 

4> = 2 + iO. 

These are all branch points; we choose the cuts of 
F(4)) for Re (4)) > ° to extend upwards as indicated 
in Fig. 2. We consider next 

= }'lim { [R-l+ [R+1_ 2 [RI2} sinh-1 1 1- dx 
R-+ro Ll J1 Jo Y(X2 - 1)-

= 2). lim (R sinh-1 I l dx. 
R-+oo JRI2 Y(X2 - 1) 

[ 
oc roc ] (11) zO.) = 2 ~l-.O tin F ? 

= ~ ( d4>F(4))(cot 7TA4> + i) 
I Je, 

+ ~ [ d4>F(4))(cot 7TJ.4> - i). 
r • ('2 

(44) 

(45) 

We now allow C1 and C2 to coalesce onto the real axis 
from the origin up to some point 6, where we choose 
() ~ 1(1'2. We evidently omit in this way some residue 
contributions from the poles of cot 7TJ.4>; however, by 
our choice of b, such contributions can affect the 
behavior of zO.) only for very large i. (specifically, 
i. = ny2, n = 1,2,' . '). It follows that the omitted 
contributions to z will be weighted in our formula 
(36) for U by r;', and may clearly be neglected in the 
present large-y analysis. Next, we take advantage of 
the fact that (cot 7TJ4 ± i) becomes exponentially 
small in the limit 4> --+ ±ioo, by deforming the rest of 
the contour C2 into the lower-half plane and by 
"wrapping" the contour C1 around the branch cuts in 
the usual way. The result of these mutilations is to 
leave Eq. (45) in the form 

z(J.) '" ~ r (cot 7Ti.4> + i)F(4)) d4> ,Jl+1I 

+ ~ r (cot 7Ti.cP - i)F(4)) £14> + 2;J F(4))d4>, , Jm J ". 
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which is conveniently decomposed as foHows: 

Z(A) = Zl(A) + ZZ(A) + Z:lA), 

Zl(A) ;;: ~ [ (cot 1TArp + i)F(rp) drp. 
I J1 

(46) 

(47) 

Z2(A.1 ;;: - ~ [ (cot 1TArp + i) sinh-1 2 ~. drp iJL[ y(rp2_4) 

)'1 ( . ..J. ," h-1 2 fA.. - - cot 1T).,/" - I) sm } ( '/" 
i III y(rp2 _ 4)-

- 2,1. [sinh-1 2 i- de/>, (48) JIV y(rp2 - 4) 

Z3(A) ;;: ~ r (cot 1TAe/> + i)f(e/» de/> 
I Ju 
+ ~ 1 (cot 1TAe/> - i)/(e/» de/> 

I III 

+ 2,1. r fee/»~ de/>, (49) 
JIV 

where 

f(..J.) ;;: sinh-1 1 + sinh-1 1 , 
. '/" y(e/>2 - 2e/»! y(e/>2 + 2e/»i-

(50) 
The contours I-IV are depicted in Fig. 3. 

We re-emphasize that the error in Eq. (46) corre
sponds to an error in V which is exponentially small; 
up to this point, no serious approximations have been 
made. Now, however, we commit ourselves to 
keeping only O(y-~) terms in Eq. (36), which then 
becomes 

4 ( 2')100 

V = -1m..!! 1 - ~ dA 
y vy 0 

X exp [-2~;.J (1 + Z + Z2 + Z3) + O(y-2). 
Ly 2! 3! 

(5t) 

[We anticipate here that each power of z contributes 
O(y-i) to V.] The contribution from ZI to Eq. (51) is 
easily disposed of. Consider 

Vl ;: -1m ~(l -~) ioodAexp [-2 ~~ A}l 
~ .!.. [ F(e/» i de/> (52) 

y2 J1 17/=1 (2xo/Ly - 21Time/»2 ' 

where we have used the identity 

x 2 00. • 21T c<J 

cot - = -: Le·n
., - I - ~ Lb(x - 21Tn), (53) 

2 I n=1 I -c<J 

in which the b-function terms are here irrelevant; to 
explicitly perform the integral over A. Since le/>I is not 

lm{<j>l 

2. 
• Re (<pl 

FIG. 3. Transformed 
integration contours. 

small on the path I, it is clear that 

VI = O(y-2). 

The higher-order terms in Zl may be similarly treated, 
and we conclude that, in our approximation, the term 
Zl may be omitted from Eq. (46). 

With regard to Z2, we observe first of all that the 
definition (48) yields, by nature of the paths n, III, IV, 

By changing the sign of the integration variable in the 
second term of this expression, we see that the last 
three terms cancel. In the remaining first term, we 
again ignore residue contributions from the poles of 
cot 1TAe/> for 0 < e/> < b [cf. the remarks following 
Eq. (45)], so that the integration contour II + III 
may be considered as displaced infinitesimally to the 
right of the imaginary e/> axis, Hence we may evaluate 
this term, 

A i-iOO+O . 1 2 
Z2 = - - cot 1TA.rp smh- i drp, 

i ioc+O y(e/>2 - 4) 
(54b) 

in terms of principal value and pole (at 4> = 0) 
contributions in the usual way. Since the integrand is 
odd in rp, the principal value vanishes and we are left 
with the semiresidue 

Z2 = sinh-1 (ify) 

= i/y + o (y-3). (55) 

The calculation of Z3 [Eq. (49) J is more complicated. 
It is helpful to observe first, from Eq. (51), that a term 
in Z3 of the form J.,"yfJ can contribute to V at most a 
term of order y,,+P (its contribution will be smaller if 
the term is purely real). Thus we may drop such terms 
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whenever ~ + f3 < - :~-. With this in mind we expand 
Eq. (50): 

f(ef» = .r(ef» + F(ef» + O(ef>~), (56) 
where 

fO(ef» == sinh-1 _1_1 + sinh-1 1 },-, 
y(2ef>r y(-2ef»-

(57) 

fl(,I.) == (i - 1) ef>} . 
. 'f' 4J2 Y 

(58) 

The error in Eq. (56) would contribute to Z3 a term of 
order A-~y-l and, by our remarks above, may be 
ignored. To compute the contribution to Z3 from fO, 
it is simplest to revert from Eq. (49) to our earlier 
formulation, Eq. (44): 

- 2[ i 100 

d ] (1 + i) 
- n~l- 0 n y(211/A)! 

+ 2[I -loodn][fo(~) - (1 + i)!]. (59a) 
n~1 0 A y(2n/A)' 

With regard to the first term here we note that 

(59b) 

where, is the Riemann zeta function.1s For the slim 
in the second term, we expand sinh-1 x - x = 

(x3/6) + 0(x5). The error term may again be ignored, 
whence 

I[fo(~) - (1 + i)] = (1- i)(Af2)~ ,G). (59c) 
n=1 A y(2n/A)! 6y3 

Finally, the integral in the last term of Eq. (59a), 

100 

dn[fo(~) - :(~~A~!] 
= A 2100 

dxx-3[sinh-1 x + sinh-1 ix - (1 + i)x], 
2y -00 (59d) 

By the nature of the path IV the last term here is 
0(A/y3) and may be neglected; the other terms may 
be integrated explicitly by means of Eq. (53) (in which 
again the (5 functions do not contribute). We have then 

(I - i)Al oo ~ -""Any 1 I = £.,e- y (y 
2y 0 11=1 

(I - ip-! ... 
-= 8(J2}TT -;- ~U)· (62) 

Equations (60) and (62) provide a sufficiently 
accurate expression for Z3 = z~ + zi. This result, 
together with Eq. (55), is now,of course,to be sub
stituted into Eq. (51). Thus, after performing the 
elementary integration over A, we find that the average 
energy loss per plate is 

Recall that 2TTL is the actual distance between plates. 
We introduce the abbreviation 

and evaluate19 the numerical coefficients in Eq. (63), 
which then becomes 

vanishes identically, as may be verified by integrating U = ay-! + by-l + cy-~ + 0(y-2), (64) 
by parts twice. We have then with 

A! (1 .) At a "-' 0.516p~, (65) 
z~ = (J2)(1 + i>,m - - ~ I ,(-V -. (60) 

y 6,\/ 2 y3 b "-' pel - 0.339p), (66) 

Next we must compute the contribution to Z3 off1• 

According to Eqs. (49) and (58), this is 

z! = (1 - i) i ~ { r (cot TTAef> + i)ef>! def> 
4J2 Y In 
+ r (cot def> - i)ef>! de/> + 2i r ef>! def>}. (61) JIll JIV 

c "-' p!(0.462 - 0.516p + 0.0784p2). (67) 

In Fig. 4 evaluation of Eq. (64)-for three values of 
p-is presented and compared with numerical evalua
tion of Eq. (36). The accuracy of the asymptotic 
formulas-even to y as low as 2.0-was, of course, 
unexpected. 
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2.2,-----------,------, FIG. 4. Energy loss 
per plate, per square 
of the unit charge per 
unit length on the 
rod, as a function of 
rod speed v, expressed 
in terms of the relativ
istic factor 

2.0 

o 
I 

-------- --_. -. _._----
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y--

y == (I - V2)-!. 

The solid lines are the 
asymptotic evaluation 
of Eq. (64) and the 
dashed lines are the 
numerical evaluation 
of Eq. (36). Curves 
are presented-as in
dicated on the figure
for three values of 

p == 21TL/xo 

which span the range 
of practical interest. 

4. ENERGY LOSS FROM A SLOW ROD 

We now turn our attention to the case in which y is 
close to 1. It is convenient to begin again with our 
exact formula (36), but here we will always drop terms 
of order v3• The small velocity limit is analytically 
somewhat awkward because of the form of lim Re (P). 
Equation (34) gives 

[.I.] 2A. n 
P(A., 1) = e-2)' 111 2 II --=- , (68) 

n=1 n 

where [A] is the largest integer less than A.. On the 
other hand we will find that 

1m [P2(A., y)] = O(V2), v ~ 0, (69) 

from which it follows in particular that we may 
approximate 

1m (P2) '" 2p2(A., I) 1m (In P). (70) 

Similarly expanding 

1 1 - ilvy 
- - . = 1 + 2iv - tv2 + O( va), 

y 1 + i/vy 

where the v2 term is irrelevant in view of Eq. (69), we 
find that Eq. (36) may be written in the form 

V = 81T(VVO + VI) + O(v3
), (71) 

V 0 == 1"0 dAe- Klp 2(A, 1), (72) 

(73) 

Here, of course, /( = 2xo/L, and we need evaluate 
1m (In P) only to lowest order. 

We consider first VO. The definition (72) may be 

rewritten as 

ex:> 11 Vo = .L dxe-K(m+")P\m + x, 1). 
111=0 0 

(74) 

From Eq. (68), 

P( + 1) _ -2(m+,,) 1112(2m + 2x - 1) m x, - e , 
m 

(75) 

where the second factor is the usual binomial co
efficient. Introducing the quantity 

we have 

Vo = fdxz2"m~Jzmeln + ~x - 1) r. (76) 

The sum of squares may be rewritten as the square of 
a sum by means of the artifice 

i [zm(2m + 2x - I)J2 
m=O In 

= J.. (21ldO Ii (ei9z)m(211l + 2x - 1)12
• (77) 

27T Jo m=O m 

We denote the sum on the right-hand side by sex, 0), 
so that 

Vo = (ldxZ2" L (
21T

dO IS(x, OW. (78) Jo 27T Jo 
By the binomial theorem and Cauchy's theorem, 

Sex, 0) = _1_ i (zei9)2m 1. dw (1 + ~)2m+2x-l, 
27Ti 171=0 'j wm+1 ze'9 

(79) 

where the integration contour must enclose the origin 
of the w plane in such a way as to include only the 
pole at IV = o. We choose it to be a circle with radius 
only slightly less than 1. The series is now geometric 
and easily summed: 

S(x,O) = _1 1. dW(l + ~)2"-1 w.. 
21Ti'j w ze·9 w - (w + ze·9)2 

(80) 
The integrand here has poles at 

w = t - zei9 ± t(1 - 4zei9)! 

and by our contour choice only the smaller of these 
is enclosed. Since the integrand is otherwise analytic 
inside the contour, 

Sex, 0) = (ze,9l-2" [t - t(1 - 4Z~i9)!]2"-I. (81) 
(1 - 4ze·8)! 

It is now convenient to replace z by 

u == 4z = e-K
/

2 
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so that upon substituting Eq. (81) into Eq. (78) we substitution 

have (l - uIY)! = i tan 0, 

Uo = ~ i\':(II2"J... i21rdOU2-4X 
4 0 2TT 0 

[1 - (1 - uei9)iy"-1[1 - (1 _ tle-i9)~]2X-1 
X 

(1 - uei9l(l - ue-wl 
(82) 

Notice that x appears now only in exponents, so that 
the x integration could readily be performed. How
ever, we defer this step in order first to simplify the 
integral over 0. To this end we replace the integration 
variable by y = e

i9
, whence 

Uo =! (1dxuW-X) ~ 1 dy 
4 Jo 2TTI y Y 

{[I - (1 - uy)1][1 - (1 - uly)~WX-1 
X ~--~--~~~--~--~~~ 

(1 - uy)1(1 - uly)t 
(83) 

Here the contour is the unit circle. The integrand has 
branch points at y = 0, u, Ilu, 00. Since it is evident 
from Eq. (82) that the integrand is continuous through
out the domain of integration, no branch cut can 
cross the contour. Thus the branch points at 0 and u 
must be connected by a cut, and we shrink the contour 
to surround this cut in the obvious way. On the new 
contour y is real and 0 ~ y ~ u so that (l - uly}~ 
is always imaginary. We thus make the further 

and obtain 

Performing the x integral we find, after some simple 
manipulations, 

1 lrr/2 (1- U2COS20)t - itanO 
U 0 = - dO '-------'---...,----

4TT -11/2 (1 - u2 cos 2 O)t 

1 x-------
cosh-1 _1 __ j() 

u cos 0 

(85) 

This form may be further simplified if we observe that 

-----------; = -1- cosh -- - iO + 1. - i tan 0 . () ( -1 1 ) 

(1 - u2 cos2 0)1 (}O u cos 0 

Hence the tan 0 term in Eq. (85) may be integrated by 
parts; we thus find its contribution is equal to that of 
the other term. We have then, finally, 

Uo = - dO cosh-1
-- - iO 1 1"/2 / ( 1 ) 

2TT -11/2 U cos 0 

= ! ("/2dO (COSh-1 _1 ) / [(COSh-1 _1 )2+ 02]. 
TT Jo u co 0 u cos 0 

(86) 

This integral is easily evaluated numerically; a plot of 
Uo(u) is given in Fig. 5. It has been checked-approxi
mately-by extrapolations of numerical evaluations 
of Eq. (36). 

The asymptotic forms of Uo for large and small 
K = 2xoIL are easily determined. Considering first 
the case of large K, we note that cosh-1 (u cos 0)-1 ::::; 
- In 2u cos 0, for u ::::; O. Hence in this limit 

Uo ::::; -HIn U)-1 = Ll2xo, xo» L. (87) 

- cosh-1 
-- cosh-1 

-- + 02 dO 1 i"/2 1 / [( 1)2] 
TT 6 U cos 0 U cos 0 

On the other hand, for K small and 0 ,..; TT14, 

cosh-1 (u cos 0)-1 ::::; (K + (2)1 for K::::; 0, 0 ,..; TT14, 

so that the main contribution to the integral in Eq. 
(86) comes from the lower end point. It is in fact clear 
that if we choose b to be proportional to, but larger 
than, KI, the small K form of Uo will follow the small 
b form of 

::::; - In In + 0 - - dO + - - . 1 i"/2{ 1 + sin OJ [( 1 + sin 0)2 2J 1 } 1 i"/2 dO 
TT 6 cos 0 cos 0 20 2TT 6 0 

(88) 
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FIG. 5. The integral Uo , defined in Eq. (86), as a function of 
/I = e-xo/L • To lowest order in rod speed, v, the energy loss per plate, 
per square of the unit charge per unit length on the rod, is given by 
U = 87TUUo' 

Here we have set u = 1 in the integrand (since 
()2 ~ 02 > 1<) and isolated the singular part of Vo 
(u = 1). Now letting 0 oc I<t become arbitrarily 
small, we find 

1 
U 0 ~ - - In D, D ~ 0, 

2rr 

1 I Xo L ('89) ~--n- xo«, 
4rr L' 

since the first integral in Eq. (88) remains finite as 
D --+ O. 

In order to evaluate VI [cf. Eq. (73)], we first note 
from Eq. (34) that for small v 

1m (In P) = 1m n~/n {; + [en - .1.)2 - AV]!} (90) 

~ ImJI1n {I + [G - ly- v2r} (91) 

since, as we have remarked, it suffices to compute VI 
to lowest order. We now set .1.= m + x, but here, 
unlike the case of Eq. (74), we choose Ixl S t. Then 

1m (In P) ~ ~Im In {I + i[V2 - (_n_ - 1)2J!} 
n=I m + x 

(92) 

~ eC ~ v -Ixl) [V2 - (m: xrr, 
(93) 

where e is the usual Heaviside function; it is equal to 

one (zero) when its argument is positive (negative). 
Equation (73) has become 

VI = '~I L:dxe-K
(m+x, p2(m + x, 1) 

X [V2 - (m : xrr, (94) 

where r; == mv/(l - v). Because of the exponential 
factor in the integrand, we may assume r; is small. It 
follows that to lowest order 

V I = i e-Kmp2(m, l)i~ [V2 - (_X _)2J} dx. (95) 
m=I -~ m + x 

The integral is (rr/2)mv2 + O(v3), whence 

(96) 

Here we have included the m = 0 term-which clearly 
does not contribute-so that the sum may be recog
nized from Eq. (79): 

00 1 i 2 
.. I e-Kmp2(m, 1) = - d() IS(O, 0)12. 

m=O 2rr 0 

We have thus merely to repeat the procedure of Eq.>. 
(74)-(84) above, setting everywhere x = O. The 
result is 

- v2 a i .. /2 
dO 

VI = 8 al< -.. /2(1 _ 11 2 COS 2 ()! 

= ~V2 :1< K(e-K/2
), (97) 

where K is the complete elliptic integral of the first 
kind. The identityI9 

dK = ~(E(k) _ K(k») , 
dk k 1 - k2 

in which E is the complete elliptic integral 
second kind, finally gives 

v
2 

{E( e-
K/2

) K( -Ki2)} V=- - e . 
I 8 1 _ e-K 

of the 

(98) 

Using knownI9 properties of the functions E and K, 
we find that VI vanishes exponentially for large 1<, 
while 

v2 1 
V I ~ - - for I< R:i O. 

8 I< 

(99) 

Combining now Eqs. (71), (86), and (98), we 
conclude 

(100) 
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APPENDIX A: THE CASE OF A MOVING 
CURRENT 

Our analysis is very easily carried over to the solu
tion of a slightly different problem, namely, that in 
which the moving rod has no net charge, but carries a 
current in the y direction. In this appendix we briefly 
outline the necessary modifications to the arguments 
and results presented above. 

The essential difference between the two problems 
is that, in the moving current case, the relevant 
component of the field is e1/' and this function satisfies 
an equation significantly simpler than that [Eq. (3)] 
for ell: in the moving charge case. In fact we have now 
to solve 

( 

02 0
2 

(
2

) • oj 1/ - + - - - 8 = 417 -
OX2 OZ2 ot2 11 at ' (AI) 

where 81/ satisfies the usual boundary condition (S) 
and 

JII = qv' b(x + xo)b(z - vt) + J.II • (A2) 

Here Xo and v are as in Fig. I, and v' is the y-directed 
velocity, associated with the given current, of the 
charge per unit length q. [The q in Eq. (A2) has the 
same numerical value as that in Eq. (4), insofar as 
the positive charge carried by a ring in an electron ring 
accelerator is small compared to the negative charge.] 
The unknown current in the plates is J.II ; we note that 
it may be represented in the same form [Eq. (9)] as JII: 
in the previous problem and that its transform also 
satisfies Eq. (13). 

Thus Eq. (AI) differs in structure from Eq. (3) only 
in having somewhat fewer derivatives, and the 
Fourier transform procedure of Eqs. (8)-(17) may be 
carried through with only minor changes. In this way 
we obtain the analogs of Eq. (14), 

qv' 
(k2 + (].~)8,,(k, w) = 417iwj_ + 417iw - bnoeikXo, 

v 
(A3) 

and ofEq. (19), 

(A4) 

Here,of course,the unknowns E+ andj_ have different 
physical meanings from the moving charge case: 
They refer to y components rather than x components 
of the field and current. More significantly, the 

absence in Eq. (A4) of the factor (k2 - w2) on the 
right-hand side allows us to conclude, by the usual 
Wiener-Hopf argument, that both sides must equal a 
constant [rather than, as in the case of Eq. (19), a 
first-degree polynomial]. The constant may be evalu
ated as usual by setting k = i(/.o; thus L is determined, 
and Eq. (A3) yields 

(AS) 

where the subscript s again indicates that we have 
omitted the infinite space solution. 

Finally we compute the time-averaged energy loss 
per plate: 

V' == - 2:L lim .!. IT dtIdX dzJo • (;., (A6) 
qVT-ooT -'1' 

where J o is,of course,the given current and we use a 
prime to distinguish the energy loss in the moving 
current case. Equation (AS) yields, in the usual way, 

V' = -417V'2y 1m Loo d), exp [ - ~; ), ]p2()" y), 

(A7) 
where Pc)"~ y) is defined by Eq. (34). 

Comparing the exact Eqs. (36) and (A7), we observe 
that the relation between V' and V is analytically very 
simple; in particular, both quantities involve the same 
integral. It follows that our asymptotic evaluations of 
V need be only trivially modified. 

Specifically in the ultrarelativistic case we find 
[remember y = (I - v~)-l] 

V' = v'2y2[a'y-i + b'y-l + c'y-! + O(y-2)], (A8) 

where 
a' = a = O.SI6p~, 

b' = -p(l + O.339p), (A9) 

c' = p!(O.462 + O.SI6p + O.0784p2), 

and we recall p = 217L/xo. Notice the surprising 
similarity between b', c' and b, c [cf. Eqs. (6S)-(67)]. 

Note that if we accelerate a rod in the z direction, 
then the y momentum (v' y) is invariant. Hence if the 
rod before acceleration (y = I) is relativistic, then 
v'y = 1, and we may expect the radiation due to the y 
current to equal that from the charge in the limit 
y» I. 

In the case of small v, Eq. (A7) implies 

V' = 817V'2V1 = O(v3), 

where Vi is given by Eq. (98). 

(AlO) 
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APPENDIX B: ENERGY BALANCE ARGUMENTS 

In this appendix we present arguments which yield 
a lower limit to the amount of diffraction radiation 
produced by a charge Q passing at constant speed v 
through an accelerating structure of finite dimensions. 
The discussion is only barely novel; related arguments 
have been made by Keil, Lawson, and others. 

The net energy gain in traversing the structure, /).U, 
may, for an electromagnetically linear device, be 
written in the form 

/).U = AQ - BQ2. (81) 

The coefficient A is proportional to the applied field: 

(82) 

where & is the field, in the absence of the charge Q, 
measured at some reference position. The coefficient 
B is the quantity we wish to bound. 

The accelerating structure has a total stored energy 
W, prior to the introduction of the charge Q, which 
is proportional to &2: 

(83) 

Clearly by energy conservation 

/).U ~ W, (84) 

which implies, by Eqs. (81), (82), and (83), 

A (Q kw A) 
B ~ Q2 - k~; . 

(85) 

Taking the maximum, with respect to Q, of the right
hand side of Eq. (85), yields the limit: 

B ~ k~/4kH" (86) 

Physically, it is clear that kw is finite, and it is also 
clear that there exist accelerating structures for which 
kE is nonzero. In particular, even for extreme relativ
istic particles an efficient acceleration column can be 
designed; i.e., k]<J need not decrease with increasing 

charge speed. For these structures-which are just the 
structures of physical interest-it follows, from Eq. 
(86), that B, can not decrease without limit with 
increasing charge speed. The restriction to electro
magnetically linear structures is not a severe restric
tion; one can, for example, imagine disconnecting a 
structure from the-generally nonlinear-power sup
plies after it has been excited. 
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R. F. KEAM 

Department of Physics, University of Auckland, Auckland, New Zealand 

(Received 24 June 1970) 

A perturbation theory is developed for the ladder approximation Bethe-Salpeter equation that 
describes bound spino! fermion-antifermion systems of small total mass. A new exact analytical solu
tion for a zero-mass system is presented and the perturbation theory is applied to it. Some time-reversal 
properties of the equation are also examined. 

I. INTRODUCTION 

In the following sections we develop a perturbation 
treatment of the Bethe-Salpeter equation1. 2 for a 
bound spino! fermion-antifermion system. Starting 
with any exact analytical solution which satisfies 
certain boundary conditions and describes the bound 
system for zero total mass, we find formulas for 
the approximate analytic dependence of the coupling 
constant on the bound state mass and on the difference 
in mass of the bound particles for small values of these 
two parameters. We have not attempted to explore the 
effects of allowing the potential to vary. 

It03 has also recently examined perturbation of the 
zero-total-mass equation (for the equal mass case 
only), but the lowest-order nonvahishing correction 
term for the coupling constant must include contri
butions from the perturbed Bethe-Salpeter amplitude,4 

and these unfortunately have been overlooked in his 
treatment. 

After recapitulating certain properties of the Bethe
Salpeter equation in Sec. II, in Sec. III we examine 
its time-reversal properties. The perturbation equa
tions are set up in Sec. IV, and developed in detail for 
s-V sector solutions in Sec. V. Finally, in Sec. VI a 
new exact solution of the unperturbed equation is 
presented, and as an example the theory of the previous 
sections is applied to it to obtain the relevant perturba
tion coefficients. 

The notation and conventions are the same as in 
previous papers5- 7 on similar topics by the author. 
We denote complex conjugate by *, Hermitian con
jugate by t, and transpose by T. 

II. BETHE-SALPETER EQUATION 

We consider the bound system oftotal4-momentum 
P formed from a spino! fermion of mass rna and a 
spin-t antifermion of mass rnb • If the state vector 
for this system is IB), the corresponding 2-body 
amplitude may be written as 

X«P(Xl' X2) = (01 T{tpixl)V;P(X2)} 18) 

= eiP
'
X (01 T{ tp«(,ubX)V;P( -,uax)} 18) 

= eip,xi.p(x), (1) 

where 

x = ,uaxl + ,ubX2, 

x = Xl - X2 

for arbitrary real values of ,ua, flb satisfying 

,un + flb = 1. 

The adjoint amplitude is 

iP.(X2' Xl) = <81 T { V;«(Xl)tpP(X2)} 10) 

(2) 

(3) 

= e-iP
' x (BI T{ VJ«(,ubX)1pP( -,uaX)} 10) 

If 

then 

= e-il"X/'h(X), (4) 

!(p) = J d4xe-ip ·",!(x), 

.I(p) = f d4xeip ·"'.!(x), 

.f(p, l*) = Y4[!(P, pO)]tY4 

(5) 

(6) 

except for pO on the real axis. 
For the bound system we write the Wick-rotated, 

ladder-approximation, relative configuration space 
Bethe-Salpeter equation as 

{y' (-io + flaP) - irna}f(x){y· (-/fj - flbP) - irnb } 

= A'lIf(x) (7) 
or, briefly, 

$pf(x) = -A<Uf(x). (8) 

In the rest system these become 

(y. a - flaE + ma)f(x)(y . a + flbE + rnb) 

= -A<Uf(x), 

$Ef(x) = -A'lIf(x). (9) 

The linear operator 'lI, which describes the inter
action binding the particles, we assume to be radial, 
i.e., to be of form [cf. Eq. (1.12)1 

'-1J! = I V;(R)rd, (10) 
i 

where R is the 4-dimensional distance from the origin 
of the Euclidean relative configuration space. 

515 
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Alternatively, in the Euclidean relative momentum 
space we have 

{y . (p + f-ta P) - ima}f(p){y . (p - flbP) - imb} 

= A'l1(f,p) (11) 
or 

Apf(p) = -}'<\1(j,p). (12) 

Apf(p) is the Fourier transform of 93p f(x) and <\1 
is a linear integral operator: 

'u,(/, p) = (27T)-4J d4k'ill(lp - kDf(k), (13) 

where 'ill is the Fourier transform of <U(R). Thus, 

'ill(K) = f d4xeiH''U(R) 

= (27T)2K-1iCXJ dRR2J1(KR)C(J(R), (14) 

and we emphasize the fact that it is a function of the 
radial coordinate K only, in momentum space. For 
instance, if the potential is due to exchange of a boson 
of mass fl, and type i, 'lD is proportional to the prop
agator, and indeed 

. (47T)2 A 

'ill(K) = - Eri , (15) 
K2 + f-t2 

where E is given in Table II of Paper II. 
If we derive the Bethe-Salpeter equation for the 

adjoint/(p), we obtain the Wick-rotated form 

{y . (p - f-tb P) - imb}/(p){y . (p + f-taP) - imJ 

= A'l1(J, p). (16) 

Alternatively, if we take the Hermitian conjugate of 
Eq. (8), pre- and postmultiply by Y4 , and use 

j(p, -P4) = Y4ft(p, P4)Y4' (I 7) 

which is derivable from (6), we obtain (16) with 
},*'u,t replacing the right member. Provided each 
VieR) in (10) is real, ,u,t = '\1. We see that if }. is 
unique, it is real. The result that A is real in the general 
case has been obtained by Naito and Nakanishi. s 

III. TIME REVERSAL PROPERTIES 

We now wish to identify the operator ~ which, 
acting on the state amplitude X' is equivalent to the 
Hilbert space time-reversal operator t acting on the 
state vector IB), i.e., 

'6X = (01 T{1p (x1}rp (xz)} T IB). (I 8) 

(In this, T is the Wick chronological product operator 
which orders "P, ip, and is not related to T.) 

We assume the relations 

t- l 1pa.(x)f' = B1p:(x'), 

t-1ip(J(x)T = ip;(x')B-r, 

where the 4 x 4 matrix B has the properties 

T -1 Yit = B YIlB, 
B'!' = -B, Bt = B-1. 

In (19), if x = (x, f), then x' = (x, -I). 
Using (1), (4), and (18)-(20), we deduce that 

~X(XI' x2) = -Y4Bi'l'(x;, X~)B-IY4' 
~i(X2' Xl) = -Y4Bx'l'(x~, X~)B-IY4, 

(19) 

(20) 

(21) 

or, in terms of the wavefunction in relative configura
tion space, 

~f(x) = -Y4BjT(X')B-IY4, 

~j(x) = -Y4BfT(x')B-1Y4' (22) 

In relative momentum space these become 

TJ.f(p) = -Y4Bj'1'( - p')B-1Y4, 

~j(p) = -Y4B/1'( - p')W1Y4' (23) 

where p' = (-p, pO), the time-reversed p. 
Since for complex pO we have Eq. (6), we can deduce 

for real P4 
TIf(P,P4) = -Bf*(p,P4)B-I. (24) 

Again, taking P4 real and the Fourier transform in 
the 4-dimensional Euclidean space, we see that (6) 
implies 

j(x, -x4) = Y4/t (X, X 4)Y4 (25) 

and hence from (22) 

~f(x, x4) = -Bf*(x, x4)B-l. (26) 

From the occurrence of the complex conjugate in (24) 
and (26), it is clear that TI is an antilinear operator. 

We now examine the time-reversal properties of (7), 
when <lJ is given by (10). According to the rules9 we 
obtain the time-reversed equation by taking the com
plex conjugate of (7), noting that the time-reversed 
total momentum P' = (-P, iPO) = -p* and that 
a' = a* = a. 

Equation (7) becomes 

{y* . (ta' - {-laP') + ima}f*(x) 

x {y* . (ta' + f-tbP') + imb} = A*C(J*f*(x). (27) 

Using (20) and (26) withf'(x) = TI/(x), we find 

{y . (-io' + f-taP') - ima}J'ex) 

X {Y' (-io' - f-tbP') - imb} 

= }.* 2 VieR)rJ'(x). (28) 
i 
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Comparing (28) with (7), we see that the latter is 
time-reversal invariant provided that;' * Vi = ;'Vi for 
each i, a condition we have already found to hold in 
Sec. II. 

Following the notation of Paper I, we note that the 
linear operators L+, S+, L-, S-, J+ = L+ + S+, 
J- = L - + S-, and J = J+ + J- have the properties 
of a set of commuting angular momenta. Thus adopt
ing standard notationlO for the generalized angular 
momenta, we may write Z!m+m- = Ilm+) Ilm-) = 
Illm+m-), where Z!m+m- is defined in Eq. (1.35). The 
properly phased Dirac-space states obtained from 
Table II of I, when normalized, we may similarly 
denote as Wi s+ s- m~ m;), where r i identifies the 
particular sector of Dirac space and so removes a 
possible ambiguity. The angular and Dirac-space 
coefficients occurring (e.g.) in !,.+,.-m+m- of Eq. (1.38) 
may be written Iri 1+ s+,r m+) Iri 1- r,r nr) or 
\ri(l+ s+)j+(l- r)r; m+ m-), and finally the angular 
and Dirac-space coefficients occurring in !,.+j-Jm of 
Eq. (1.54) may be written Iri(l+ s+)j+(l- r)r; J mI· 
(For brevity we may sometimes omit the I±, s±, where 
all four are coupled, and put simply I r;j+ r m+ m-) or 
W;j+ j- J m) as the case may be.) 

We define the bra vector corresponding to any 
angular and/or Dirac-space ket vector (in the sense 
used in this paragraph) to be the Hermitian conjugate 
of that ket: 

(29) 

The scalar product is defined as the operation of 
taking the trace in Dirac space and integrating over 
all angles in configuration space. By (A 7) of Appendix 
A we thus have 

(II m+ m-I k k /1+ 11-) = b!kO",+n+b",-n-' (30) 

Similarly 

(ri s+ r m+ 111-1 rj r+,- /1+ n-> 

= oijos+r,os-r-om+n+bm-n-' (31) 

The coupled angular-momentum vectors defined above 
are as a consequence also clearly orthonormal in 
their respective arguments. 

The following commutation and anticommutation 
properties of ~ are readily verified: 

[~, (L±)2] = ['G, (S±)2] = ['G, (J±)2] = ['G, J2] = 0, 

[~, LtJ+ = [T;, st]+ = [T;, Jtl~- = [t;, J i ]+ = O. 
(32) 

Thus applied to a simultaneous eigenstate of any 
commuting set of the generalized and/or ordinary 
angular momenta and their z components, ~ produces 

an eigenstate with the same total angular momenta 
but with reversed components. From the unitary 

character of ~ the normalization is unaltered, but 
a phase change may have been introduced. Indeed if 
Z(ji' nlj)is an arbitrary angular variable and/or 
Dirac-space angular momentum eigenfunction corre
sponding to quantum numbers ji and m j , then 

~ZUi' m,) = (-I)"ZUi, -m,.). (33) 

In Table 1 we list the value of 1) for each commonly 
occurring form of Z(j;, m j ).5.11 

Since T; is antilinear, the reality of the Clebsch
Gordan coefficients ensures that 1) is well defined. 

As in Paper I, zero-mass solutions of the Bethe
Salpeter equation for the system we are considering 
are of the form 

ff+;-m+m- = '2NR) Wi(ls+)rCls-)F; m+" m-) (34) 
! 

or 

f;+j- Jm = '2.f!(R) W;(ls+)r(ls-)F; J mI. (35) 
! 

Since the value of 1} in each sum can easily be 
~hown to be independent of t, we have in each case 

(36) 
But 

= '2NR) Wi(is+)r(ls-)F; -m+ -m-). (37) 
! 

On physical grounds we clearly wish to identify the 

two states t;ff+rm+m- and ff+r-m+-m-, and this is 

TABLE 1. Phase factors (-1)q introduced into the bispherical 
angular and Dirac space eigenfunctions by the time-reversal 

operator ~ according to Eq. (33), m = m" + m-. 

Illmt m'1) 
i~4 Wi S' s- m: m;) 

W4 s+ s- m: m;) 

Wijj mt- m-) ; = 1,2,5 
i = 3,4 

Wijj+lm'm-) ;=2 

WijjJm) 

Wijj + 1/ m) 
Wij+ 1}/m) 

i = 3,4 
i = 2 
; = 3,4 
; = 1,2,5 
i = 3,4 
i = 2, 3,4 
i = 2,3,4 

rl 

mi + m'1 + I 
m: + m; + 1 
m;- + m; 
m + 1 
m 
m 
m + 1 
m 
m + 1 

2j-J+m+l 
2j-J + m 
2j - J + m 
2j-/ + m 
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achieved by putting dimension (mass)2, if en is of dimension (mass)2-r , 

fi(R) = ei'1~(R), (38) A(i, rJ., p2, if, 3t, m) = mT).(i, rJ., p2, if, 3t), (42) 

where' is independent of I and may as well be chosen 
zero. Thus we may choose all configuration space 
radial functions to be real. Such a choice is clear 
enough from Eqs. (1.43)-(1.53), but we can now 
attribute it to the time-reversal properties of the 
interaction. 

In relative-momentum space on the other hand, 
because the Hankel transform equations [(HUla) 
and (IILllb)] introduce factors i±21, the momentum
space radial functions separate into two disjoint sets 
{lS,fT ,Ip} and {Iv ,IA}' any member in one of which 
is real relative to another member of the same set and 
purely imaginary relative to a member of the other 
set. 

IV. PERTURBATION EQUATIONS 

As was shown in Paper I, solutions of the Bethe
Salpeter equation for zero total mass may be chosen 
in the case ma = mb to be simultaneous eigenstates of 
the operator sets {IX, p, J2,Jp .'It} or equivalently 
{(J+)2, (J-)2, J2,J:$> .:R}. Either set with the relevant 
Bethe-Salpeter operator .'.I301'lJ adjoined constitutes a 
complete set of commuting operators for the system. 
Simultaneous eigenfunctions of tllese complete sets 
are, in general, not parity eigenfunctions since one can 
show [e.g., from (11.8)] 

Cif, PJ+ = O. (39) 

One has immediately, however, that if commutes with 
p2, so that a complete set including if is given by 

(40) 

Simultaneous eigenfunctions of each of these sets have 
a well-defined charge parity since for zero-mass 
solutions we have the relation 01.7), and the actual 
forms of the eigenfunctions foHow from Sec. 2 and 
Table I of Paper II and from Appendix E. The eigen
value of $;le\J is _).-1, where A is the coupling 
constant. Let us distinguish between different possible 
eigenvalues for a given set of eigenvalues of the 
members of the set other than .'.I3;l'lJ by an index i. 
As is apparent, e.g., from the radial equations 
(L43)-(1.53), J.. is independent of the eigenvalues of 
J2 and J •. Thus 

}, = },(i, rJ., p2, if, 3t, rn), (41) 

where we have made explicit the dependence through 
$;I'lJ of A on the (equal) masses rn of the interacting 
fermion and antifermion. Notice that, since $0 is of 

where X is independent of m provided any other 
masses in <t) are changed in proportion with m. When 
<tJ is the p,?tential due to exchange of a particle, 
r = 0 and A == A.. We shall assume this to be the 
case hereafter. 

When the total mass E is nonzero and/or ma ¢ mb' 
.'.I3E no longer commutes with IX or (J. It still commutes 
with J2, J~, ~, and e the charge parity operator. We 
shall assume that,given any simultaneous eigenfunc
tion of the operators in set (40), we can perturb this to 
find an approximate solution when E is small but 
nonzero and when rna ~ mb' Such a solution we 
shall require to retain the values of J2, Jz , :T, and e 
that the unperturbed solution had. 

Putting 
fla = Ub = ·L 

rna = m +£1, mo = 111 - £1, (43) 

E = 1E, 
we see that the form of Eq. (11) in the center-of-mass 
system becomes 

(I' . P + iEY, - im - ifl)/(p) 

x (I' . P - iEY, - 1m + i~) = }''l1(/,p) (44) 

or briefly 
"i •. hl(p) = -A'l1(j,p). (45) 

A now clearly is a function of if, e, E, and fl, which in 
the limit E - 0, £1- 0 becomes A(i, IX, (J2, if, :It). We 
shall write only the variables E and £1 explicitly, viz., 

(46) 

Let us assume that A. is an analytic function of £ 

and £1 about E = ~ = O. Then we have 

<:I) 

I. = :l ArsET fl" (47) 

where 
r.s=O 

(48) 

The corresponding momentum-space eigenfunction 
I (p) also depends on £ and£1, and, assuming analyticity 
in these variables about their zero values, we can write 

00 

f = I fr8Er~8. (49) 
r.s=o 

Substituting the power series (47) and (49) in (44), 
we obtain by equating coefficients of like powers of 
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E and ~ the following set of equations: 

(Aoo + Aoo'lL)foo = 0, 

(Aoo + Aoo'lL)flO 

= i{Ydoo(Y'p - im) - (y' P - im)fooY,} - AlO'lL/OO' 

(5010) 

(Aoo + Aoo'lL)fol = - i{JooY . P - Y . pfoo} - Aul'lLfoo, 

(5001) 

and, in general, 

(Aoo + Auo'lL)frs 

= i{y,fr-ls(Y . p - im) - (y . p - im)fr-l sy,} 

- i{Jrs-lY . P - Y . pfrS-l} 

+ y,fr-2sY, + frs-2 - {y,fr-ls-l + fr-ls-lY'} 
r 3 

-! ! Amn'lLfr-m s-n , 
m=O n=O 
m+n::> 1 

(50rs) 

where in the right member any Jab with negative a or b 
is put equal to zero. In principle, the successive solu
tion of these equations would allow us to determine / 
to any required order of E and ~. 

Of more interest, however, is the expansion (47) 
for A. 

Define the linear function qF, }, acting on 4 x 4 
matrix functions G(p) in Euclidean relative momentum 
space, by 

q F, G} = J d40p Tr [F(p)G(p»), (51) 

where the integral is over the complete space and 
where one assumes that F and G have the properties 
necessary for the integral to converge. F also is to be 
a 4 x 4 matrix function. For arbitrary F(resp. G), 
we define F(resp. G), by Eq. (17). 

Now 

e{f~, (Aoo + AOO'U,)/rs} = q/rs> (Aoo + Aoo'lL)j~o} = 0 

(52) 
by Eqs. (5000), (16), and (17). 

Next consider qf~o, Y4o!00(Y . p - im)}. It is not 
difficult to show that the presence of the Y 4 factor 
causes terms with nonvanishing traces in e always to 
have bispherical angular functions belonging to 
integral I values multiplied by angular functions 
belonging to half-odd-integral I values. When the 
angular integrations are performed, such products 
must vanish by (A5) of Appendix A. Thus 

e{/oo, y4/oo(Y' P - im)} = 0 (53a) 

and similarly 

e{/oo, (y . p - im)!ooY,} = O. (53b) 

Applying euoo, } to Eq. (5010) and using (52) and 
(53), we thus see that, unless Loo == I.:{j~, 'lLloo} 
vanishes, 

AlO = O. (54) 

Whichever sector (S- V, T-A, P)!oo is in, it is easily 
shown that/ooY . p - Y . ploo is in" a sector or combina
tion of the two sectors orthogonal to it. Therefore 
from the application of the trace operation 

qloo ,fooY . p - Y . ploo} = 0 

and, from (5001) (again unless Loo vanishes), 

Aol = O. 

From Eq. (50u) we find 

(55) 

(56) 

AuLoo = iqloo, y4/0l(Y' p - im) - (y' p - im)!01Y'} 

- iqloo ,flOY . p - Y . Pho} 

- I.:{/oo, y,!oo + looY4o}' (57) 

The last contribution on the right vanishes by the same 
argument from which we obtained (53a). Using the 
analogs of (5010) and (5001) for /, we then find 

AuLoo = eCho, (Aoo + Aoo'lL)!01} 

+ e{flO' (Aoo + Aoo'tL)lol} 

= 2 Re eCho, (Aoo + Aoo'lL)!Ol}, (58) 

and this vanishes since it can be shown that 

eCho, (Aoo + Aoo'lL)!01} 

is purely imaginary. Again provided Loo is nonzero, 

All = O. (59) 

We note also from (5000) that 

Loo = -Ao~e{joo, Aoofoo}. (60) 

Thus, for small E and ~, an expansion for A to the 
lowest nonzero contributing orders is 

A ~ Aoo + E
2A20 + ~2A02' (61) 

where, from (5020) and (5002), 

A20Loo = iq/oo, y,!to(Y . P - im) - (y . p - im)!toY,} 

+ qloo, Y,!ooy,}, (62) 

A02LOO = -ie{j~o,folY' P - Y' plol} + qloo,foo}. 

(63) 

A,20 and A,02 can thus be found provided that Eqs. (5010) 

and (5001) can be solved for !to and!Ol for the partic
ular potential. 

A further useful relation can be found in the partic
ular case where the potential is due to the exchange 
of a massless particle. In this case we do not have 
to change elJ if we change m.12 We exploit the relation 
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a),/am = 0: If one applies C{j~o, } to the first-order 
terms of the equation obtained by perturbing the 
particle and antiparticle masses equally in (5000), one 
obtains 

C{j~o,Joo(Y· P - im) + (1' . p - im)/oo} = 0, (64) 

which, combined with (55), gives 

q/oo,JooY· p} = CC~o, y. ploo} = imq!oo,j~o}· 
(65) 

We note that condition (111.16) is in general neces
sary for the radial functions in /00 in order that 
q.foo, Ao%o} converge, and hence from (60) in 
order that Loo be finite. 

v. APPLICATION TO S- V SECTOR 
SOLUTIONS 

We now restrict our attention to the perturbation of 
zero-total-mass solutions from the S-V sector of 
Dirac space. There are three distinct types of such 
solutions.13 The corresponding eigenvalues of the 
operators in set (40), except for the potential
dependent .'Bol '1.l, are listed in Table II. 

In the following analysis we shall consider only /sv 
type solutions. 

From (1.38), (1.54), and Eq. (35) of this paper we 
have, for j ~ 0, 

!oo(X) = /s(R) ifl(j O)j(j O)j; J m) 

+ /n(R) if2(j + i i)j(j + i t)j; J m) 

+ /V2(R) if2(j - t t)j(j - i i)j; J m) (66) 

or briefly 

/oo(X) = /s(R) IS) + /V1(R) I VI) + /v2(R) I V2). (67) 

In relative momentum space (cf. the Appendix of 
Paper III) we similarly have, using k as our momentum 
variable, 

/oo(k) = f,,(K) IS) + /n(K) I VI) + /v2(K) I V2), (68) 

respect to the Bessel function of order 21 + 1 and 
where the angular variables in the kets now refer to 
momentum space. 

From (7), 

Ioo(k) = [Y4foo(k, -k4)Y4]t 

= (_1)2i-J {(SI f~(K) 

- (Vllf;I(K) - (V2If;2(K)} (69a) 

= (-l)J{(Slfs + (VI I fV1 + (V2Ifv2}, (69b) 

where in (69b) we have exploited the fact that con
figuration space radial functions are real and con
sequently, through (IIl.llb), each momentum space 
radial function has the reality property of (_;)21 for 
its appropriate I. 

From Eqs. (60), (62), and (63) we see that C{f~o ,foo}, 
C{foo, Y4/00Y4}, and CU~o, Ao%o} must be evaluated. 

Using the definition of the scalar product of 
angular and of Dirac space functions, we have 

qloo,Joo} = f d4k Tr [Ioo(k)foo(k)] 

= (_1)2i-J f dKK3(1fsl2 - Ifn l2 
- IfvzI2). 

(70) 

From the analysis of Appendix C and the detailed 
calculations in Appendix D, 

(-1)2i-J C{/oo,Y4fooY4} 

Also 

= f dKK 3[lfsl 2 (SI (1'4 x 1'4) IS) 

- Ifn l2 (VII (1'4 x 1'4) IVI) 

- IfV212 (V21 (1'4 x 1'4) 1V2)] 

=fdKK3 [1 { 12 + If; 12 (2(j + 1) + J(J + 1)) 
JS VI 4(j + 1)2 

- IfV212 ej 
- ~;; + 0) 1 (71) 

where, as in (HUla) and (I1I.llb), KJz(K) and C{foo, -Aoo/oo} = C{foo, y' p/ooY' p} 
(27T)2RJ,,(R) are mutual Hankel transforms with - imC{foo, /001" P + l' . p/oo} - m2l:{foo, foo}, 

TABLE II. Eigenvalues of nonradial operators in operator set (40) for S-V sector solutions. 

Solution type 

4j(j + I) 
4(j + 1)' 
4(j + 1)' 

p' 

o 
4(j + I)' 
4(j + I)' 

J' 

J(J + I) 
J(1 + I) 
J(J + I) 

J, fi 

m (-1)J 
m ( _1)J+l 
m (-1)J 

.R 

-3 
-3 
-3 

j E 0, t. I, i, .... Given j, for fSV J EO, 1, 2, ... , 2j and for gV8±J E I, 2, ... ,2j + I. Given J, mE J, 
j - I, ... , -J. The charge parity in each case is (- 1)2;. 
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so that 

( -1 )2j-JC{j~0, -Aooj~o} 

=JdKK 5 (lfsI 2 
- 1 (lfn l2 

- Ifv212) 
(2j + 1) 

+ 4[j(j + I)]} Re (f* f ») 
2j + 1 VlJV2 

[ ( ·+1)~ + 4m f dKK
4 

- ~j + 1 1m (f~fV1) 

+ (2j ~ 1)\m (f,;fV2)] 

- m2J dKK3(1fsl2 - Ifvl12 - Ifv212), (72) 

and this can be simplified considerably by using (65) 
when the potential is due to zero-mass particle 
exchange. 

Next we turn to the evaluation of 110 and 101 from 
(5010), and (5001). Since A10 = A01 = 0, these equations 
become, respectively, 

(Aoo + Aoo'U,)/10 = i{Y4/00(Y . P - im) 

- (I' . P - im)/ooY4}, (73) 

(Aoo + Aoo'lL)/ol = -i{/ooY· P - y· ploo}. (74) 

If fro or /01 is a particular solution of (73) or (74), 
respectively, a general solution is obtained by adding 
an arbitrary linear combination of solutions g; of the 
homogeneous equation 

(Aoo + Aoo'lL)gi = O. (75) 

Provided Aoo is nondegenerate with respect to the 
quantum numbers (r,r, .'It') or equivalently «()(', (J'2, 
if' , .'It') [see, e.g., Eq. (42)], the only solution of (75) is 
g; = /00. In this case, a solution (49), 

f = foo + E(f10 + cdoo) + !J..(fOl + cdoo) + 0 (ET!J..S) , 
r+8=2 

can always be recast as 

l' = no + Ef~o + tl.f~l + 0 (Ertl. s
) , 

where 
r+8=2 

l' = (1 + ECI + !J..C2)-lf, 

f~o = (1 + EC I + tl.C2)-Y10, etc. 

We can thus arrange without loss of generality that 
when .1.00 is nondegenerate, the solution of the homo
geneous equation does not contribute to fro or /01 in 
(73) and (74). In the following analysis we shall 

assume 200 is nondegenerate and' that the appropriate 
arrangement has been made. 

If /00 was an eigenfunction of .1t belonging to eigen
value.1t' say, we saw earlier that/ooY· p - y· ploo lay 
in a sector or sectors orthogonal to /00. The same 
applies to 1'4/00(1' . P - im) - (I' . P - im)/ooy,· Here, 
with /00 in the S-V sector, the right members of (73) 
and (74) each lie in the T-A sector. Since from Paper 
I we know that Aoo + Aoo '\1 commutes with .'It, we thus 
find from (73) and (74) that both /10 and /01 belong 
to the T-A sector. 

We now recouple the generalized angular momenta 
in IS), lVI), and 1V2), re-express the results in hyper
spherical coordinates ("P, e, 1», and absorb the "P
dependent factors into the coefficients. This leads to 

100 = So WIJOJm) + V1 II\J + 11 Jm) 

+ V2 W2J - 1 1 J m) + Vo Ir2 JOJ m), (76) 

where 

Wi L S J m) = I (L S ml ms I J m)yLm/e, 1»(ri )Sm, 
mlm" 

(77) 

and (r;)sm, is read from Table IV in Appendix B. 
The coefficients, with C~ defined as in (B4), are 

So = j2i-Jf sct;("P), 

VI = j2i-J{AJ+1dv1c t;t}("P) - BJ+1dV2Ct;!~("P)}' 

V2 = j2i-J{ -AJ-llfV1Ct;+~("P) + BJ-llfV2Ct;=~("P)}' 
Vo = j2i-J+1{A JofnC{;+1("P) - BJofnC{H("P)}, 

where 

{

j + t j+t 

~, AJ 0 = (21 + I)!(2j + 1) ~ 

A J ±l1 = [(21 + 3)3]!(2j + 1) 

{

j+t j+t 
X t i 

j j 

t 
j 

J ± I} 
1 , 

J 

BJ" _ (2J + 1)1(2j _ 1{ ~ i j ~ t 

BJ ±ll = [(21 + 3)3]t(2j - 1) 

{

j - t j - t 
x t t 

j j 

J ± I} 
1 . 

J 

(78) 

(79) 



                                                                                                                                    

522 R. F. KEAM 

From the properties of e~ under the substitution 
1p -+ 7T - 1p, So, VI', and V2 have opposite P4 parity 
from Vo, e.g., that of So being even or odd according 
as 2j - J is even or odd. 

Since the parity of 100, and hence /10 and /01' is 
( _1)J, ho and /01 are both of the form 

g = Tl WI J + 1 1 J m) + T2 Ir3' J - 1 1 J m) 

+ To jrt J 1 J m) + Ao jr, J 1 J m), (80) 

where To, Tl , T2, and Ao are each functions of p2, 1p. 

By defining 

a = (2J: S, b=(J+l)i 
2J + 1 ' 

T+ = aTI + bT2, V+ = i(aVI + bV2), 

T- = bTl - aT2, V- = i(bVI - aV2), 

U+ = T+ cos 1p - iTo sin 1p, 

U- = T+ sin 1p + iTo cos 1p, 

Eq. (73) reduces to 

(81) 

(p2 + m2)T- + ;"001'- = 2pSo sin 1p + 2mV-, (82a) 

(p2 + m2)U+ + AooO+ = 2mV+ cos 1p, (82b) 

2mpAo + (p2 - m2)U- - ;"000- = -2mV+ sin 1p, 

(82c) 

-2mpU- + (p2 - m2)Ao - AooAo = -2pV+ sin 1p, 

(82d) 
where, for Q = U+, U-, T-, or Ao, 

Ii 2 1 ~ 1 eL( LOOd 3 ~(p , 1p) = -2 k n 1p) KK w" 
87T n=o(n + 1) 0 

x f d1p' sin2 1p'Q(k2
, 1p')e~( 1p') (83) 

and where14 

'UJ(lp - kl) 

= i WnCk2, p2)C~(cos X) 
n-O 

00 W n I 

= 27T2 ~ n ~ ~ Y:lm(ilk)Ynlm(ilp), (84) 
71=0 (n + 1) [=0 m=-[ 

for X the angle between vector p which has direction 

ill' = (1pl" Ol" epl') and vector k which has direction 
ilk = (1pk,Ok'eplc). 

Similarly, Eq. (74) reduces to 

(p2 + m2)T- + Aoo1'- = -2ipVo sin 1p + 2ipV- cos 1p, 

(p2 + m2)U+ + AooO+ = 2ipV+, 

2mpAo + (p2 - m2)U- - AooO- = 0, 

-2mpU- + (p2 - m2)Ao - ;"ooA-;' = O. 

(85a) 

(85b) 

(85c) 

(85d) 

We notice that, in each of the equation sets (82) and 
(85), the equation for T- is not coupled to the other 
three. 

One could further remove the 1p variables and obtain 
infinite sets of coupled radial equations. 

Throughout this section the j = 0 case can be 
obtained by first setting/V2 = 0 and afterwards in the 
remaining elements of the relevant equations setting 
j= O. 

VI. A SPECIAL CASE 

A computer program has been developed to test 
the cases j = 0 in order to find eigenvalues of the 
coupling constant for zero-total-mass systems with 
amplitudes of type /SV, where the potentia] is due to 
exchange of a massless boson. Such systems will have 
positive parity, and, since j = 0 implies J = 0, they 
will also have positive charge parity. The ranges of A 
for which eigenvalues are relevant have been deter
mined in Paper III. In Table III below, we list the 
type of interaction, the theoretically allowed range 
of A, the range tested by computer, and the eigenvalue 
found. 

The eigenfunction belonging to the eigenvalue 
Aoo = V is 

i"7T/OO(k) = /s(K) - /V1(K)(y . k)/K 

= s(K) + vl(K)(y· k)/K. (86) 

sand (m/K)vl are each polynomials in the reciprocal 
of the variable 

(87) 
namely 

s = 2Ny-7(1 - 14y-l + 56y-2 - 84y-3 + 42y-4), 

VI = 7iN(K/m)y-8(l - 2y-l)(l - 6y-l + 6y-2), (88) 

TABLE III. Results of a computer test of allowed ranges of A. 

Type of massless 
exchange particle 

s 
V 
A 
P 

Allowed range of A 

O<A 
O<A< t. 
0<). 
0<).<1 

Range tested by computer 

0< A ~ 10 
complete allowed range 

0<).~50 
complete allowed range 

Eigenvalue found 

nil 
nil 

ADD =}.,f
nil 
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where N is a normalization constant that is irrelevant 
to our discussion. 

As K -+ 0, S = O(KO), VI = O(K), 

as K -+ 00, S = O(K-14) , Vi = O(K-15). (89) 

Conditions (HU5b) are clearly satisfied. 
From (70), (71), and (72), noting that/v2 = 0, and 

putting N = 1, we obtain 

c{ioo,foo} = lm4 f"dY(Y - 1)(ls12 - IV112) 

= _ !m4 . 2 . 7 , (90) 
5·13·17'19 

C{ioo, ydooY4} = ! m4f'" dy(y - 1)(Is12 + ! IV112) 

= ~m4 . 2 . 7 (91) 
• 13'17'19' 

-c{ioo, Aooj~o} = !mSf"'dY(Y - l)y(Isl2 - IV112) 

6 3 . 72 

= -!m . 22 . 11 . 13 . 17 . 19' (92) 

Since /10 and /01 have positive parity, they must each 
be of the form Tl WjllOO), and, in fact, 

2hr/10 = _y-l[S - ;(m/K)vd, (93) 

/01 = O. (94) 

Using (93), we then find 

iC{j~o, ydlO(Y . k - im) - (y' k - im)!lOY4} 

43·947 
= _!m4 (95) 

24 . 3 . 5 . 7 . 13 . 17 . 19 ' 

and from (62) and (63) we have approximately, for 
small £ and ~, 

). :::::; - 1 + 0.766 - + 0.838 - . j 5 ( E2 ~2) 
2 m 2 m2 

(96) 

In summary, when E/m« 1, I~I/m« 1, Eq. (96) 
gives the value for the coupling constant). = g2/(41T)2 
that in ladder approximation binds a fermion of mass 
m + ~ to an antifermion of mass m - ~ by exchange 
of a massless axial vector particle to produce a bound 
state of mass £ having zero angular momentum, 
positive parity, and positive charge parity. 

It is rather disconcerting to find that a).{a(p) is 
positive, i.e., that the greater the strength of the bind
ing, the greater is the mass of the composite system. 
Certainly one would insist that to be physically 
reasonable A must tend to zero as £ approaches 2m, 
since this value corresponds to the system becoming 
unbound. Thus there exists a point between £ = 0 and 
£ = 2m where either oAjo(£2) = 0 or else 0)./0(£2) 

has a singularity.ls The result (96) is perhaps also a 
caution against too readily assuming in other con
texts17 that aAfo(£2) is negative. 

One feature which has been ignored in our analysis 
is that, when € < ~, the more massive particle (a say) 
is unstable against the decay a -+ ah + b. This has 
repercussions, for instance, in the appearance of 
multiple poles in the scattering Green's function in 
scalar-scalar equations such as the Wick-Cutkosky 
modeP6 at € = ~. We have assumed analyticity of all 
relevant functions about € = ~ = 0, in order to 
establish the framework for the series expansions 
(47) and (49), and such an assumption may not be 
justified. However, no pathological features other than 
the sign of a)./o(p) have been apparent, and we rather 
doubt that the existence of the decay threshold is the 
source of this property. Indeed in the ladder approxi
mation the Wick-Cutkosky model exhibits smooth 
behavior as € passes through the value ~, as can be 
seen from Eq. (6.12) of Ref. 16. Questions such as 
whether the trouble results from the inadequacy of the 
ladder approximation, of course, lie completely 
beyond the scope of this investigation. 
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APPENDIX A: FURTHER PROPERTIES OF 
BISPHERICAL ANGULAR FUNCTIONS 

The bispherical angular functions Zlm+m- (~', OJ, 4» 
were introduced in Paper I and discussed there and 
in the Appendix to Paper III. We develop here certain 
further properties relevant to the present paper. 

The rotation operator D(oc (J y) which rotates a set 
of coordinate axes through Euler angles (oc, (J, y) is 
defined, e.g., by Edmonds,ls Eq. (4.1.2). A comparison 
between the equations which express L2 and L. 
[Edmonds, (2.2.2) and (2.2.3)] in terms of the Euler 
angles and our equations (1.33) and (1.34) reveals a 
close similarity. Indeed it is not difficult to show, 
from Edmonds (4.1.12) and (4.1.23) and our (1.35) and 
(1.36), that the representative of D(OJ + 4>, 2v, OJ - 4», 

j):~~ .-m- (OJ + 4>, 2v, OJ - 4» 

= (_I)lml(~)tZI + - (v OJ -L) 21 + 1 m m , ,'t', (Al) 

where m = m+ + m-. 
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Applying the formula [cf. Edmonds, Eq. (4.3.1), p. 60] 

~~1l~~~.l = ! (1112 rJ- Y II ),)(/112 {3l511 ,u)~i~, (A2) 
j 

we then find as an expansion for the product of two 
Z functions (of the same arguments v, W, cf» 

Z -Z __ (21 + 1)(2k + l))t 
zm+m kn+n -

2n2 

Z+k ( l)/+k-L 
X I - (l k m+ n+ I L M+) 

L=JHJ (2L + l)f 

X (l k m- n-I L M-)ZLM+M-' (A3) 

It is readily shown that 

J dOZ1m+m-

== ih 
dv f" dw f"dcf> sin v cos VZI".+m- (v, W, cf» 

= 2f 1Tl5IOl5m+ol5".-o, (A4) 

whence 

J dOZlm+m-Zkn+n- = (-1)ml5zkJm+_n+J".-_n-· (AS) 

Using 

Z~+m- = (-1) mZ z_m+_m-, (A6) 

we thus arrive at the orthonormality condition 

APPENDIX B: RELATION BETWEEN THE BI
SPHERICAL AND HYPERSPHERICAL BASES 

IN CONFIGURATION, MOMENTUM, 
AND DIRAC SPACES 

From the relation 

L = L+ + L-, (Bl) 
the state 

(B2) 

is a normalized eigenfunction of (L +)2 == (L -)2, V, L z • 

But the normalized hyperspherical harmonic 

YnLM(1p, (), cf» = e~(1p)YLJ,i(), cf», (B3) 

eL _ (22
L+l. (n + l)(n - L)!)! 

n(1p)- n (n+L+l)! 

X L! sinL 1pc[:~l(cos 1p), (B4) 

where Y LM is the usual spherical harmonic and 
c~l is a Gegenbauer polynomial, is an eigenfunction 

of (XL = 2{(U)2 + (L-)2}, V and Lz belonging, respec
tively, to eigenvalues n(n + 2), L(L + 1), and M 
[cf. (1.26) et seq.]. Thus, 1(lI)L M) may also be repre
sented by Y2ILM' 

The phases of the two representations may differ and 
so we put 

! (ll m+ m-I L M)Zlm+m- = ei'Y2ILM' (B5) 
m+m-

where, = '(I L M) and is real. From L = L+ + L
we have for the step operators L± = L", ± iLy, etc., 

L± = L! + L"±, (B6) 

and, applying this to (B5), we find that , is inde
pendent of M for given I and L. From the definitions 
of x" in terms of bispherical coordinates and in terms 
of hyperspherical coordinates, putting v = 0, we find 
is equivalent to putting () = 0 and w = in - 1p (mod 
2n) or putting () = nand w = in + 1p. Ifwe substitute 
these values into (B5), it is not difficult to show that 
, = in(21 - L), so that 

! (II m+ m-I L M)Zlm+m- = ei!11(21-LlY21L.1I' 
m+m-

(B7) 

Exactly the same relation obtains in the 4-dimensional 
Euclidean relative momentum space, since in place of 
(I. 7) we have 

.A(,,,v = -i(p"ov - Pvo,,) + Ha"v,]' (BS) 

which is equivalent formally to replacing x" - p" in 
all generalized angular momentum operators, and the 
functions Zlm+m- and Y2lLM have exactly the same 
interpretation as they do in relative configuration 
space. 

If we take the Dirac-space eigenfunctions 

Is+ s- m-;- m;) 
to be as given in Table II of Paper I, then the corre
sponding spherical basis eigenfunctions defined in the 
standard way are 

Is+ s- Sm.,) = I (s+ s- m; m;-I S ms) Is+ s- m; m;-). 
m,+m,- (B9) 

It is convenient, however, in connection with the 
parity operation, to ensure that the matrices chosen 
are eigenfunctions of Y4' This is already the case for 
those of type r1 , r 2 , r 4 , and r 5 , but not for the two 
sets of type r 3' We overcome the problem by taking 
linear combinations of the two sets to give two new 
sets rt and r; which satisfy Y4rt = ± rt. With this 
modification the spherical basis eigenfunctions are 
listed in Table IV below. In each case a normalization 
factor t is required. 
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TABLE IV. Spherical basis Dirac-space eigenfunctions. 

S m, Eigenfunctions (not normalized) 

s+ = s- = 0 0 0 1 Y. 

(1 
0 iy, i . iY.Y4 

s+ = s- = ! 1 -2-!(Yl + iY2) -2-tiy.(y, + Y2) 

0 Y3 iY.Y3 
-1 2-t (Yl - iYa) 2-!iY.(Yl - iYa) 

Linear combination 

s+ = 1, s- = 0 {! 
{-2-l (a41 + ia'2) {-2-t(a23 + i(31) 

0 1'. a'3 rt a'2 s+ = 0, s- = 1 
-1 2-I(a41 - ia .. ) 2- t (a23 - i(31) 

APPENDIX C: TENSOR OPERATORS FOR 
ROTATIONS IN A FOUR-DIMENSIONAL 

EUCLIDEAN SPACE 

Let IX be a 4 x 4 matrix whose elements may be 
functions of spatial variables. As a premultiplier, it is 
a linear operator when applied to arbitrary 4 x 4 
matrices. Denoting it by (a x J) and using the bra 
and ket notation in the same sense as in Sec. III, we 
may write 

(IX X I) IA) = IXA(v, W, 4». (CI) 

respectively, then 

(BI (IX x (3t) IA) = f dO. Tr (BtIXA(3t) 

= f dO. Tr «(3t BtIXA) 

= «(3I(Bt x A)IIX). (C8) 

Under an arbitrary infinitesimal rotation of the 
physical system determined by real parameters lXp.y 
(with lXyp. = -IXI'Y)' the 2-body amplitude X becomes 

Similarly with IX as a postmultiplier, we have the I (I U ) 
X = - iIXI'Y';'''I'Y X 

linear operator (I x IX): and similarly 
(C9) 

(I X IX) IA) = A(v, W, 4»IX. (C2) 

More generally we have linear operators of the form 
(IX X (3), with 

(IX X (3) IA) = IXA(3, (C3) 

and such relations as 

(IX X (3)(y x b) = (IXY X 15(3). (C4) 

By requiring, in the usual way, that an operator be 
associative in an arbitrary scalar product, we have 

{(BI (IX x (3)) IA) = (BI {(IX x (3) IA)} 

= f dO. Tr (Bt IXA(3) 

= f dO. Tr «(3B
t
IXA) 

for all (BI and IA), so that 

(BI (IX x (3) = (3Bt lX. 

We also find 

(C5) 

(C6) 

(C7) 

Finally, we notice the duality which exists between 
linear operators and vectors: 

If the matrices IX and (3 are allowed forms for the 
4 x 4 matrices that represent vectors IIX) and 1(3), 

X
tl - X/t - (I - ,·IX .At, )Xt - - I'Y I'Y . (ClO) 

In the center-of-mass system and when E = 0, we have 
[cf. (J.7)] in configuration space 

.At,p.y = -i(xiJy - x)JI') + Hal'V' (Cll) 

and in relative momentum space 

.M,I'Y = -i(piJ; - pyO~) + HaI'Y' ], (CI2) 

where 01' = %xl" o~ = %PI'· 
Radial factors are clearly irrelevant so far as such 

rotations are concerned and so we shall concentrate 
on just the angular and Dirac-space factors. 

Let us require that under arbitrary rotations scalar 
products 

(AI (IX x (3) IB) = f dO. Tr (A tIXB(3) , (C13) 

such as we have been considering ,remain invariant. 
From this we now deduce that each element 4> in the 
scalar product (i.e., cp = A, IX, B, (3) undergoes the 
same transformation: 

Under the infinitesimal unitary transformation 

U = exp (-ilXp.y.A(,p.y) = 1 - iIXp.y.A(,p.V' (CI5) 
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kets, bras, and linear operators transform, respec
tively, as 

IA) -+ IA)' = U IA) = (l - i~I'Y.A{,I'Y) IA), (CI6) 

(BI-+ (BI' = (HI Ut = (HI (l + i~l'v.A{,py), (CI7) 

P -+ pi = UpUt = P - i~I'Y[.A{,l'v' Plop, (CIS) 

where we demonstrate the significance of the suffix 
"op" as follows: 

P' IA)' = Up IA) = (1 - i~/ly.A{,/lY)P IA) 

= PIA) - ict.l'v.A{,I'Y(P IA» 

= P(IA)' + ict.l'v.A{,/lY IA)') 

- ict.l'v.A{,/lv(P I A )/) 

= (P - ict./lv[.A{,l'v, Plop) IA)'. (CI9) 

In this it is clear that the .A{,I'Y within the commutator 
acts not only on P but also on the ket IA)' to which 
P is applied. 

But also 

P' IA)' = (l - ict.fJy.A{,I'Y}P IA) 

so that 

= {I - ict./l.(.A{,l'vP) IA) - iPct.I'Y(.A{,,..y IA»} 

= {(I - ict.pv.A{,pv)fJ}{(1 - ict.pv.A{,py) IA)} 

= {(l - ict.p • .A{,p.)P} IA)', (C20) 

P' = (1 - ict./lv.A{,p.)P, (C21) 

where we have omitted the suffix "op," since here the 
.A{,P. acts only on p. For an outer product operator 
(ct. X P) we clearly have 

(ct. x P), = (Uct.Ut x UPUt ), (C22) 

so that with this and (C21) we have verified (C14). 
This result further emphasizes the duality that exists 
between the vectors and linear operators. 

Let us now change the basis of our rotation genera
tors and write 

ct.py.A{,pv = «+. J+ + «-. J-, (C23) 

where J± are defined in (1.29). Following standard 
procedure (e.g., Brink and Satchler,1° Chap. 4.5, p. 52 
et seq.) we define the components of an irreducible 
tensor operator Pta in the NiP subspace by 

[J; , P~JoP = qp~q, 

[J!, P~JOI' = [(k + q + l){k - q)l*Pt'q+l' (C24) 

[J::, P~]op = [(k - q + l)(k + q)]*Pt'q-l' 

from which also follows 

I [Jt, [Jt, p~q]op]op = k(k + l)ptq· (C25) 
i 

Comparing (C19) and (C20), we see that these may 
also be written 

J;Ptq = qpt,q, 
J!P~ = [(k + q + l)(k - q)]tpt.Hl' (C26) 

J::p~ = [(k - q + l)(k + q)]lptH' 

(J±)2P~ = k(k + l)Pt.q' (C27) 

These last results imply that irreducible tensor 
operator components of the form P~(p) have analo
gous matrix expression to the eigenfunctions belonging 
to eigenvalues q and k(k + 1) for Jf and (J±)2, respec
tively. In particular, if Pk+k-q+q-(p) is a component of 
an irreducible tensor operator of rank k+ in subspace 
Nt, and rank k- in subspace N;p, then 

Pk+k-qcq-(p) = POp/) x matrix of Ik+k-q+q-), (C2S) 

where POp!) is a scalar function of Ipl. 

{3kfl = I (k+k-q+q-I kq){3k+k-q+q- (C29) 
q+q-

is the q component of an irreducible tensor operator of 
rank k with respect to ordinary 3-dimensional 
rotations. 

A linear operator of the form (Pk+k-q+o- X Yl+l-r+r-) 
transforms as a tensor component of the product of 
two irreducible representations. 

Similarly, 

1 (K+K-Q+Q-I KQ)(k+/+q+r+ I Kl-Q+) 
q+q-r+r-Q+Q-

X (k-I-q-'-I K-Q-)({3k+k-Q+O- X Yl+l-r+r-) (C30) 

transforms as the Q component of a tensor operator of 
rank K under ordinary 3-dimensional rotations. 

APPENDIX D: REDUCTION OF MATRIX 
ELEMENTS 

The general type of matrix element to be reduced is 

(ri(l+ s+)j+(l- s-)r; J ml 0 Wj(lt st)jt(ll sl)jl; J m), 

(Dl) 

where 0 is a scalar under 4D rotations. If one could 
split the terms of C) into factors referring separately 
to the Nip, N;p subspaces. the reduction of the 
matrix element would be simple. Unfortunately this 
is not possible, and we can only express the tenus of 0 
as scalar products of tensor operators in momentum 
(or configuration) space and in Dirac space. We then 
have to recouple the generalized angular momenta 
into ordinary orbital and spin-parts in the bra and 
the keto Thus, 

(D2) 
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where R~ is an irreducible tensor operator of rank k 
in momentum space and S~ is an irreducible tensor 
operator of rank k in Dirac space. We have 

(ri(l+ s+)j+o- s-)T; J ml 

= L [(2L + 1)(2S + 1)(2j+ + 1)(2r + l)]t 

: {;: ;~ ~}(r,u+nwnS;Jml' (OJ) 

and there is a similar expansion for the keto The 
matrix element (01) can now be expressed as a linear 
combination of terms of type 

(ri(l+ nL(s+ s-)S; J ml R:' S: jr lIt liJ1:(st s"]")S'; J m) 
= [(2L + 1)(2S + l)]t(-I)J-L-S'W(L1:SS'; kJ) 

X «(1+ nLI IR~II(lt 11)1:) 
X (r;(s+ s-)SIIS~I jr ,cst sl)S'), (04) 

where the reduced matrix elements are defined as in 
Eq. (4.15) of Ref. 10. The final step is then to deter
mine the relevant reduced matrix elements for sub
stitution into (04). 

Consider first the reduction of 

(05) 

where 

F(K) = «Slf~ - (Vllf~1 - (V2If;2) 

X (Y4 X Y4)(fS IS) + fn \VI) + fV2 \V2» 
(06) 

and where K = Ipl. We can reduce the labor by 
noticing that because of the trace operation in the 
scalar product all cross terms between S and V terms 
vanish, and because of the angular integration the 
VCV2 cross terms vanish. Therefore, 

F(K) = IfsI 2 (SI (Y4 X Y4) IS) 

- Ifn l2 (VII (Y4 X Y4) \VI) 
- IfV212 (V21 (Y4 X Y4) I V2). (07) 

From Table IV, (C28) et seq., we see that (Y4 X Y4) 
is an irreducible tensor operator of rank 0 in Dirac 
space with respect to 3D rotations. We then require 
the reduced matrix elements 

(rl(00)011(Y4 X Y4)1 jrl(OO) 0) = 1, 

(r2Ht)011(Y4 x Y4)1 jr2(tt)0) = 1, (08) 

(r2(tt) 111(Y4 x Y4)1 W2(t!) 1) = -1. 
Using these with (03) (and its ket analog), (04), and 
(D7), we obtain 

F(K) = II. 12 + Iii 12 (2{j + 1) + J(J + 1») 
S VI 4(j + 1)2 

- IfV212 Cj - ~;~ + 1»). (09) 

Next consider 

q./oo, -Aoofoo} 

= J d4p Tr U~o[Y . pfooY . P 

- im(fooY' p + Y . pfoo) - m'ioo]}· (010) 

The last term is determined at once from (70). From 
(55), 

Tr (foofooY . p) = Tr (fooY . pfoo). (011) 
Thus 

J d4p Tr [!oo(fooY . p + Y . pfoo)] = 2 J dKK3G(K), 

(012) 
where 

G(K) = J dO. Tr (foofooY . p) 

= «Slf~ - (Vllfh - (V2If;2)(l x y. p) 

x (fs IS) + fn \VI) + fV2 \V2». (013) 

This time we see that only cross products between S 
and V vectors contribute, and 

G(K) = 2i 1m {f~fn (SI (l x Y . p) \VI) 

+ f~fV2 (SI (l x Y . p) \V2)}. (014) 

For (l X Y . p) the expansion (02) becomes 

(l x Y . p) = P4(l x Y4) + p. (l x y), (015) 

and the relevant reduced matrix elements are 

«(j j)Jllp411(j + t j + t)J) 

= tiK (2j + J + 2)(2j - J + 1»)t 
(2j + 1)(2j + 2) , 

«(j j)Jllp411(j - t j - !)J) 

= _!iK(2j - J)(2j + J + 1»)t 
2j(2j + 1) , 

«(j j)Jllpll(j + t j + t)J + 1) 

= _ tK (J + 1 . (2j + J + 3)(2j + J + 2»)t 
2J + 1 (2j + 1)(2j + 2) , 

«(j j)Jllpll(j - t j - t)J + 1) 

= _ K(J + 1 . (2j - J)(2j - J - 1»)t (016) 
t 2J + 1 2j(2j + 1) , 

«(j j)Jllpll(j + t j + t)J - 1) 

= tK (_J _ . (2j - J + 2)(2j - J + 1»)t 
2J + 1 (2j + 1)(2j + 2) , 

«j j)Jllpll(j - t j - t)J - 1) 

= tK (_J_ . (2j + J + 1)(2j + J»)' 
2J + 1 2j(2j + 1) , 

(riO 0)011(1 x Y4)1 !r2(! t)O) = i, 

(riO 0)011(1 x y)llr2(! t)l) = _3t, 
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whence 

and 

(SI (l x Y' p) IVI) = -K _.I - , (
'+I)i 

2j + 1 

(SI (I x y' p) 1V2) = K(_j_)i, 
2j + 1 

f d4p Tr Lfoo(fooY . P + Y . pfoo)] 

. ('+l i 
= 4i J dKK

4
[- ~j + 1) 1m U;fVl) 

(

,1 

+ 2j ~ 1) 1m (f;fV2)]' 
Finally 

J d4p Tr (fooY . pfooY . p) = J dKK3H(K), 

H(K) = IfsI 2 (SI (y . p x y . p) 1V2) 

- Ifvll2 (VII (y . p x y' p) IVI) 

- Ifv212 (V21 (y . p x y' p) 1V2) 

(017) 

(018) 

* - 2 Re UVlfv2(Vll (y' p x y' p) 1V2)]. 

(019) 
The expansion (02) in this case becomes 

(y • p X Y . p) = P!(Y4 x Y4) + P4P • (Y4 X y) 

+ P4P • (y x Y4) + fp2(Yi x Yi) 

+ (PiP; - !p26i ;) . (Yi x Yj)' (020) 

A tedious calculation then gives 

f d4p Tr (!ooY' pfooY' p) 

= J dKK
O
(lfsl

2 
- (2j ~ 1) (lfVl1

2 
- Ifv212) 

+ 4[j(j + l)]i Re (f* r») (021) 
2j + 1 VlJV2 . 

APPENDIX E: FURTHER S-V SECTOR 
SOLUTIONS 

If one assumes the existence of S-V sector solutions 
with the S term vanishing identically, we have 
(following Sec. V of Paper I) the possibilities 

(B') r = r - 1 = j, Iv = j + t, 
(C') j+ - 1 = r = j, Iv = j + ! (El) 

leading to respective solutions 

f1f+lm+m- =fv l(j + t t)j(j +! !)j + l;m+m-?, 

f7-0. i m+m- = fv IU + ! t)j + lU + t !)j; m+m-), 
(E2) 

where in each case the radial function v = Iv(R) 
satisfies 

{DtD'f} 2 DoD; v = (m + ;'V2)v. (E3) 

From the Appendix of Paper I we see that both 
solutions are "transverse" since 

~'. v= O. (E4) 

Angular momentum eigenstates are obtained as in 
Eq. (11.9) by coupling: 

f7f+lJm =fv IU + t i)j(j + t t)j + 1; J m), 

J ~ 1, 

fr~iJ m =fv l(j + l t)j + 1(j + t t)j; J m), 

J ~ 1 (E5) 

and parity eigenstates by taking the linear combina
tions [cf. (11.12)] 

sv± _ fSV ± fSV giHIJm- ij+lJm i+liJm' (E6) 

Being in the S-V sector all these functions have 
charge parity (-1 )2i. 
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This paper studies mutual coupling of transverse and lon&itudinal high-f~equenc~ .wll:ves of both 
electron and ion fluid motions of perturbation in slowly varymg nonmagneh.zed equI~lbTlum. plasm~. 
Besides, the particular problem of coupling of ion acoustic and ~lectromag?ettc waves IS con~tdered m 
detail. The power of electromagnetic radiation generated by an Ion acoustic wave and also m reverse 
from the latter to the former have been evaluated. 

1. INTRODUCTION 

Wave propagation through ionized and other media 
requiring the use of Maxwell's equations of electro
dynamics have gained recently much importance.l-14 

In addition to this very long list, one may refer to 
papers15- 20 which have discussed wave propagation 
from a somewhat similar point of view. 

Perturbation in uniform infinite plasma travels as 
transverse and longitudinal waves.7 If both electron 
and ion oscillations are included, then two modes of 
mutually connected longitudinal oscillation are ob
tained in addition to a mode of transverse field, which 
propagates independent of the former. Hence no 
transfer of power occurs from one form to the other 
in this idealization. 

The opposite extreme of this simplification is the 
limit of most randomly fluctuating medium, where 
development and transmission of fluctuation has to be 
considered from an entirely different point of view.2l 

Between these extreme limiting cases lies the inter
mediate class of problems of current interest, namely 
wave propagation in a slowly varying medium, where 
approximations of either case do not apply. A mathe
matical basis for the study of this class in plasmas has 
not yet been developed satisfactorily. The plasma 
equations, even in the approximation of two-com
ponent fully ionized fluid mixture (not to speak of the 
statistical distribution functions in the 6-dimensional 
phase space), are complicated. In a slowly varying 
medium the wavelength of propagation has practically 
an upper limit, which should he much less than the 
characteristic length of variation of any equilibrium 
parameter. Then the pressure and the transverse 
perturbation fields are mutually connected, and so 
excitation of one leads to the growth of the other. 
This results in mutual power transfer.i5•16 The wave 
equation for the magnetic field vector contains source 
terms depending on the pressure perturbation, and 
similarly the wave equation of the latter depends on 
the source of the former. All these sources vanish for 
constancy of equilibrium concentration and kinetic 

temperatures. Elimination of the sources leads in each 
case to sixth-order differential equations. 

The works of Wait,l Budden ,2 Tid man ,16 and 
Bremmer20 show that the method of WKB would be 
suitable for studying wave propagation in slowly 
varying plasma. Pioneering research on plasma wave 
coupling was done by Vlasov,ta Tidman,16 and Field,19 
Chakraborty22 also worked on coupling of waves in 
Vlasov plasma in a crude and simplified way. Propa
gation of transverse waves in a slowly varying fluid 
plasma for electron perturbation only was studied by 
the author.23 

Section 2 begins with the plasma field equations. 
The equations of coupling between H and density 
perturbation of both electrons and ions are then 
established. In Sec. 3 the energy conservation is de
duced for the plasma model under consideration. 
Section 4 considers the case of coupling between low
frequency ion motion and electromagnetic waves. 
Evaluation of power transfer from ion acoustic to 
transverse field and vice versa is the subject matter of 
Sec. 5. 

2. THE COUPLING EQUATIONS 

Starting linearized equations for the two-component 
fully ionized plasma in the absence of a static magnetic 
field can be taken in the form 

au , eN 
N -" = -grad (It !bNc) - - E, (2.1) at m 

au· eN N _1 = -grad (V~ONi) + - E, (2.2) at M 
1 aH 

curl E = - - - (2.3) 
C at ' 

1 oE 471-N e 
curl H = - -;- + --' (-Uc + U j), (2.4) 

C vt C 

div (NU,,) + E.. oN c = 0, div (NU j ) + E.. oNj = 0, at at 
(2.5) 

div E = -41Te(oNe - oN j ), (2.6) 

529 
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where the quantities bearing the subscripts e and i are 
those for the electrons and ions respectively, V! = 
XTe/m and V~ = XTj/M, X is the Boltzmann constant, 
and Te and T j are the electron and ion kinetic tempera
tures, respectively. The meanings of the other quantities 
are obvious and standard. The equilibrium parameters 
N, Vj (or Ti), and Ve (or Te) are the slowly varying 
functions of position. 

The volume forces due to nonzero gradients of 
equilibrium pressure may be maintained by some 
static nonelectrical forces acting in the same direction 
on both electrons and ions and sustaining the given 
plasma configuration without causing charge separa
tion. Hence these forces are independent of charge 
separation. This approximation can roughly represent 
some astrophysical models, the ionosphere, or charged 
cloud causing lightning. Even a slow drift of the body 
owing to static forces proportional to the gradients of 
the earlier mentioned parameters can be allowed. 

For simplicity, theoretical analysis of the balance of 
equilibrium forces has been dropped because the 
consequent inclusion of complications cannot throw 
any additional light on the problems of this paper. 

In the uniform equilibrium 
plasma grad N = 0, . . . . (2.7) 

In the plasma model of this paper this relation is not 
true. 

The equations of coupling should link the purely 
transverse H and purely longitudinal bNe and bNj 
when (2.7) does not hold. Also, the number of cou
pling equations should be sufficient. 

Equation (2.4) is differentiated with respect to time. 
From that, Vc and Vi are eliminated with the help of 
momentum transfer equations (2.1) and (2.2). Lastly, 
E is eliminated with the help of e1ectrodynamical 
equations, giving for H waves the equation 

"it +- (2w~ + 2w~ - C2V2)H + (W: + W~)(W~ + Wf - C 2V2)H - C2[grad (W: + wD curl Ii] 

= -47Tec[grad (W~ + Wn grad C~e -~j) 1 (2.8) 

The equations for bNe and bNj are 

bNe + (2W~ + Wr - V2V~)bNc - W~bNj + (W~ + WD(W~ - V2V~)bNe - (W~ + WDW:bNi 

+ (grad (bPe _ bPi) grad W:) = ~ (curl :A grad W:), (2.9) 
m M 47Te 

~Ni + (2Wr + W: - V2VDt5N i - WTbN e + (W! + WD(Wr - V2Vf)t5N i - (W! + WDW:bN e 

- (grad (bPe _ t5Pi
) grad W:) = - ~ (curl:A grad WD, (2.10) 

m M 47Te 
where 

bpe = mV;bNc' bpi = MV~bNi' W: = 47TNe2/m, W~ = 47TNe2JM. 

These have been obtained by eliminating Vc and Vi between (2.5), (2.1), and (2.2) and then eliminating E 
with the help of (2.3) and (2.4). 

The first of these three equations gives the usual dispersion relation for transverse waves and the last 
two for longitudinal waves if N, Ve , and Vi are uniform and a plane wave solution is imposed. Also, 
coupling ceases if the disturbance propagates along the direction of gradients of these parameters. 

If time dependence is exp (-iWt), then (2.8)-(2.10) yield 

2 2 2 2 2 C 2[grad (W~ + wD curl H] 
(W - We - Wi + C V)H - W2 _ W~ _ W: 

47Tiec[grad (W: + wD grad [(bPelm) - (t5pi/M)]] 
= , (2.11) 

W(W2- W!- WD 

2 2 2 2 2 (grad [(t5Pe/m) - (bpi/M )] grad W~) iWC(curlHgrad W:) 
(W - We + V Ve)bN c + Wet5N j + W2 _ W: _ W~ 47Te(W2 - W~ - WD' (2.12) 

2 2 2 2 2 (grad [(t5Pc/m) - (t5pdM)] grad wD _ iWc(curl H grad wD 
(W - Wi + V Vi)bNi + Wi 6Ne - W2 _ w! _ W~ - 47Te(W2- W:- wD' (2.13) 
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From these equations sixth-order differential eq uations 
for each of bNe, bNi , and H would be obtained by 
eliminating the other two. 

3. ENERGY TRANSPORT 

Energy transport due to propagation of waves in 
uniform plasma in the linear approximation has been 
thoroughly discussed in Refs. 6, 7, 24, and 25. 
Following (7) and extending to the nonuniform model 
of Sec. 2, we see that the power flow density (E • J) 
and the energy conservation are given by 

where 

(E·J) = E..(WJ( + Wp ) + divS' + L at 
= -div S - :t (WE + WM ), (3.1) 

WK = !(MNUf+ mNU~), 

Wp = (bpibNi + bpebN e){2N, (3.2) 

S' = Uibpi + Uebpe, S = (Cf47T)[EH], 

WE = E2{87T, WM = H2j87T, (3.3) 

L = [bp;(U i grad N) + bpeCUe grad N)]jN. (3.4) 

The volume source term L vanishes for (2.7). 

4. COUPLING BETWEEN ELECTROMAGNETIC 
AND ION WAVES 

Low-frequency disturbances in the plasma can 
excite propagation of ion oscillations, interaction of 
which with inhomogeneities gives rise to radiation of 
electromagnetic waves through the boundary of a non
uniform region. In this case one can put We = 0 and 
bNe = 0 and consider only equations (2.11) and (2.13) 
in the form 

V2H + K2H = [grad Wfcurl H] 
t K2C2 

t 

47Tie[grad W~ grad b p] 
+ MWcKiVf ,(4.1) 

V2~ K2b __ (grad bp grad WD 
p + 1 P - KiV~ 

where 

W 2 
- W~ _ K2 
C2 - t' 

+ iWc(curl H grad Wi) ,(4.2) 
47TeMV~K: 

W2 - Wf _ K2 2 
- 1 bp = V,·bp,". 

V~ , 

(4.3) 

They will be solved in a region free from boundaries 
and sources of singularities. The density perturbation 
falls from outside and passes through the region 
exciting modes of H. Gradients of Nand TI are 

assumed to be acting along (0, Z). The disturbance 
propagates in the (Z, X) plane and the x dependence 
of the field variables is exp (iKox), where Ko is con
stant. Then (4.1), resolved into the component equa
tions, and (4.2) yield 

d2Hx 1 dW~ dHx -+ --
dZ2 W2 

- W~ dZ dZ 

+ (K; - K~)Hx - 2iKo dwf Hz = 0, (4.4) 
W - Wr dz 

d2 

- Hz + (K 2 - K2)Hz = 0 (4.5) dZ2 to, 

47TeKO dWf b 
= - MWcKi dZ Pi> (4.6) 

d2 d d 
- bp - -log (W2 

- WD - tJp + (K~ - K~)tJp 
dZ2 dZ dZ 

KoWcM dWf H 
= - 47Te(W2 _ Wn dZ y. (4.7) 

Of these four equations the first and second connect 
together Hx and Hz (the components ofH lying in the 
plane of incidence), which are not coupled to tJp by 
grad N. But op is coupled by grad N to Hy through 
(4.6) and (4.7)-equations useful for our purpose and 
reducible to 

C~2 + K~) WI = €W2, (:~2 + K~) W2 = €WI, (4.8) 

where 

K2 K2 2 d
2 

( 1 ) 2 = } - Ko - K t - - , 
dZ2 K t 

(4.10) 

€ = ~ (K 10 K2) = _ Ko dW~ 
dZ 0 g t W 2 _ W~ dZ 

(4.11) 

(4.12) 

For € = 0, the WKB solutions are 

Al exp (if K} dZ) + B} exp (-if K} dZ) 

WI = JK
I 

A2 exp (if K2 dZ) + B2 exp ( - if Kz dZ) 

W2 = JK
2 

(4.13) 
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Then the complete solution, terms being kept up to 
derivatives of A's and B's, would be 

Hy 
"Pl=

Kt 

where 

Ale;€! + B1e-ih 

JK1 

K~[A2eih( 1 d
2
(JK2) id ) +- -- -- +2-logA 

E JK2 JK2 d~~ d;~ 2 

B2e-
ih

( 1 d
2
(JK2 ) id )] 

+ JK
2 

- JK
2 

d~~ - 2 d~~ (log B2) , 

(4.14) 

(4.16) 

Putting the first or second solution of "PI from (4.13) 
on the fourth-order equation for "P, obtained by 
eliminating "P2 between the equations of (4.8), we get 

(4.17) 

where higher-order derivatives of Al and Bl have been 
neglected. Similarly, the values of derivatives of 
log A2 and log B2 are calculated by interchanging the 
suffixes 1 and 2 in (4.17). In this way the variation in 
amplitude is expressed in terms of variation of the 
material parameters. 

Hence (4.14) and (4.15) give 

(4.18) 

b ( 41Te ) 
P MWcK t 

= A2ei~2 + B2e-i
S. + Kf(A1eih + B1e-ih) 

.JK2 2E .JK1 

( 

E2 1 d2 
) 

X K~K~ _ KD - JK1 d;~ (~Kl) . (4.19) 

The coefficients of eis, and e-iS2 in (4.18) and of eih and 
e-is, in (4.19) are small in the sense of smallness of 
quantities adopted in this paper. 

5. POWER TRANSFER FROM ION ACOUSTIC 
TO TRANSVERSE FIELDS 

The direction normal to the surface 

Kox + KIf dZ = const 

is regarded as the incident direction, and~the corre
sponding wave is called the incident wave. Similarly, 
the normal to the surface 

Kox - f K dZ = const 

is the direction of reflection. Also the suffixes il and 
'1 would be used to denote the incident and the 
reflected field components for the wave whose K = Kl 
of (4.10). Similar quantities for K = K2 of (4.10) 
would bear the suffixes i2 and '2' 

In the uniform equilbrium plasma i1 and '1 fields 
(respectively, i2 and '2) are the forward and backward 
going parts of the transverse (respectively, longi
tudinal) waves. Hence, as continuation in the slowly 
varying equilibrium plasma though the waves are 
mutually coupled, the i1 and '1 fields are regarded as 
transverse and the i2 and '2 as longitudinal. 

The Z components of Sand S' of (3.3) become 

S = _ iWHY. (dHY + 41TeKo b ) 
z 41TK~ dZ MWc P , (5.1) 

S' - - i(bp) (W ~(b) K ceH) (5.2) 
z - M(W2 _ wD N dZ P + 0 y. 

The Poynting vector for the i1 and '1 fields has a 
principal term which does not vanish and a small term 
which vanishes for constancy of N. In that case, for i2 
and '2 fields also, S vanishes, but, if N is slowly 
varying, then S is small. 

Keeping the principal terms and the largest of the 
smaller terms, calculating the real values of Sz and S; 
in all the incident cases, and then taking the average 
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over one time period, one gets 

The ratios 

(5.7) 

can be regarded as the coupling coefficients up to 
first order of derivatives of N. 

The amplitudes proportional to AI' A 2 , etc., in 
(5.3)-(5.6) can be replaced by 

where Hy* and (jp* are complex conjugates of Hy 
and bp. 

We now consider slowly varying plasma between 
two parallel planes Z = ZI and Z = Z2' Electro
magnetic waves fall obliquely on the side Z = ZI and 
pass out through the plane Z = Z2' Interaction with 
the plasma generates, at all points of its passage 
pressure wave, the net power flow, the form of which 
is [(S~)i1]i, where the suffixes 1 and 2 on the right out
side the square brackets mean the difference between 

the values at the two end planes. Hence 

. [IHYI 2 WW~(l - W~ + K2C2/W2)i 
[(S,),,]2 _ 1 1 1 0 

• 1 - (1 _ W~/W2)5 

X (~log W~)2J2 K~~. 
dz 81TW 

The quantity \Hy\ is the magnitude of the amplitude of 
the magnetic field. Similarly, 

. K2 [lbPl2 W~V~(l - W~ + K 2c2/W2)i 
[(S )'2]2 __ 0_ 1 1 1 0 

• 1 - 2W10 Pi(l _ W~/W2)5 

x (:z log W~)J:, (Pi = MN), 

is the Poynting flow created by pressure wave falling 
obliquely on Z = 21 and passing out through 2 = 2 2 , 
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The problem' of random-motion of an· exci ton in a square lattice with a sink is formulated in terms of 
finite difference equations. The case where the exciton suffers a fixed delay time at each lattice site is 
solved numerically. The more realistic case, also investigated by Knox [J. Theoret. BioI. 21, 244 (1968)], 
where this delay tin;te is in~er~ly proportional t.o, the number of nearest neighbors, is shown to be equiv
alent to the case wIth perIodIC boundary condItIOns. Consequently, an exact analytic expression for the 
total delay time can for that case be derived. For lattices of any size this quantity can now easily be 
calculated. Giving the exciton the possibility of escaping from the lattice will influence the total delay time. 
This effect is investigated, as well as the effect of distributing the sink over the lattice sites. As a by-product, 
an amusingly simple formula 

k(A) = (1, ~ C(/I) 
C 1\) I' 

is derived for the average path length upon first return in a random walk over an arbitrary network. 

1. INTRODUCTION 

The subject of trapping of energy by a sink in a plane 
lattice of molecules, in which a localized excitation can 
move by random jumps to neighboring molecules and 
finally to a trap, has been treated by several authors: 
Avery, Bay, and Szent-Gyorgyi,l ten Bosch and 
Ruijgrok,2 Pearlstein,3 Robinson,4 Knox,S and Mon
troll.6.' About the timing of the jumps, two different 
assumptions can be made: 

(I) The time spent on a site is inversely proportional 
to, or otherwise dependent upon, the number of 
neighbors of the site. 

(2) The time spent on a site is fixed. 
The first case occurs, for instance, when the jump is 

caused by the interaction of a populated site with its 
nearest (unpopulated) neighbors. This seems to be the 
case in the photosynthetic unit (e.g., see Duysens8). 

The second case would apply if the jump were caused 
either by an internal clock mechanism or by the inter
action with all other lattice sites. In both cases differ
ence equations have been derived2.5 for the average 
time T(x, y) between the moments of creation of the 
exciton in the lattice point (x,y) and of its anni
hilation by a sink in the origin (0, 0). 

The first purpose of this paper is to give a unified 
derivation of the equations for the two cases and to 
show how in these two cases the average life time of an 
exciton depends on the size of the lattice (Sec. 2). For 
case (1) we will derive an exact analytic expression 
CEq. (4.2)] for T(x, y), which can be used for its 
numerical calculation for a square lattice of any size. 
For case (2) numerical calculations are performed, and 
the results are compared with those of case (1). 

In Sec. 3 we investigate to what extent this average 
life time is changed when the exciton has the possi
bility of escaping from the lattice before it is trapped, 
e.g., by a fluorescence mechanism. 

It is frequently assumed that imposing periodic 
boundary conditions introduces only minor deviations. 
For square lattices of different size, these deviations 
are calculated in Sec. 4. It turns out that such devia
tions only occur when the exciton spends a fixed time 
on every lattice site it visits, i.e., in case (2). In Sec. 5 
a study is made of the case where the trapping center 
can be found on any site with an arbitrary distribution 
function. 

2. THE AVERAGE TRAPPING TIME 

Consider the problem of a random walk of an 
exciton on a 2-dimensional square lattice with (2n + 
1)2 lattice points. The lattice distance is taken to be 
unity. The exciton jumps with equal probability to any 
of its nearest neighbors. It disappears if it arrives at 
the center (0, 0), where the trap is located. The center 
of the lattice is taken as the origin of the coordinate 
system, so that a lattice site has the coordinates 
(x, y), x and y being integers with Ixl ~ nand Iyl ~ n. 
Three types of points are distinguished (see Fig. I): 
an internal point, e.g., A has four nearest neighbors; 
a side point, e.g., B has three nearest neighbors; a 
corner point, e.g., C has two nearest neighbors. 

In case (1) an exciton, before jumping from the 
point P to one of its nearest neighbors, will spend a 
time ,- on P, if P is an internal point. This time be
comes tT if P is a side point and 2,- if P is a corner 
point. In general, a time 4,-/c(x, y) is spent on the 

534 
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FIG. 1. Three types 
of points are distin
guished. 

A 

c 

B 

lattice site (x,y), where c(x,y) is the number of 
nearest neighbors of (x, y). 

Let T(l)(x, y) be the average trapping time of an 
exciton, which starts at (x, y). For an internal point, 
different from the origin, one has 

T(l)(x, y) = T + HT(l)(x + 1, y) + T(l)(x - 1, y) 

+ T(l)(x,y + 1) + T(l)(x,y - 1)]. (2.1) 

This equation is also correct if (x,y) is a nearest 
neighbor of the origin. The T(1)(O, 0) occurring in the 
right-hand side of (2.1) must then be put equal to 
zero. If (x,y) is a side point (e.g., B in Fig. 1), the 
eq uation becomes 

T(l)(x, y) = tT + HT(l)(x - I, y) 

+ T(l)(x,y + 1) + T(1)(x,y - 1)]. (2.2) 

For a corner point (e.g., C in Fig. 1), one gets 

T(l)(x,y) = 2T + HT(l)(x - 1, y) + T(l)(x,y - 1)]. 

(2.3) 

The equations for T(l)(x, y) can be combined into 

4 I (",.11) 
T(l)(x, y) = __ T_ + -_ ! T(l)(x', y'), 

c(x, y) c(x, y) ",' ,11' 

T(ll(O, 0) = o. 
(x, y) ¥= (0,0), 

(2.4) 

The summation extends over the nearest neighbors of 

It should be stressed that for this case D(l)(x, y) must 
not be considered as an average path-length. 

In case (2) the exciton spends a fixed time T on each 
lattice site. The equations for the average trapping 
time T(2)(X, y) differ from (2.4) only in the first term on 
the right-hand side. This should read T. The corre
sponding equations for 

D(2)(X, y) = T-1T(2)(X, y) 

become 
1 (",.11) 

D(2)(X, y) = 1 + -- ! D(2)(X', y'), 
c(x, y) ",'.11' 

(x, y) ¥= (0, 0), 

D(2)(0, 0) = 0, (2.6) 

which are the equations derived before by ten Bosch 
and Ruijgrok.2 

In this way it is seen that the difference between the 
two sets of equations (2.5) and (2.6) can be traced back 
to the assumptions (1) and (2) of Sec. 1. One should 
realize that in both cases the average path length is the 
same and is given by D(2)(X, y). As has been pointed 
out by Knox,5 the earlier solution2 of (2.6) was at 
fault. 

For several values of n the functions D(l)(x, y) and 
D(2)(X, y) were numerically solved from their respec
tive equations. As a check on the computation of 
D(2)(X, y), use was made of the formula 

D(2)(I,O) = 4n2 + 2n - I, (2.7) 

which is proved in Sec. 5. It is the extension of a 
formula, derived by Montroll,6 for a lattice with 
periodic boundary conditions. 

For n = 9 the functions D(l)(x, y) and D(2)(X, y) 
are given in Tables I and II, respectively. The averages 
over all lattice points of D(1)(x, y) and D(2)(X, y), i.e., 

I 
D1(n) = 2! D(l)(x, y) 

(2n + 1) "'-1/ 

TABLE I. The average trapping time D(lI(X,y) (in units of '7') for 
a square lattice with n = 9 in the case of a variable delay time 

[case (1)]. 
(x, y). The set of equations (2.4) is identical with Eq. 
(21) of the paper by Knox,S if one identifies F-1 with y 
4T. For reasons of simplicity we consider, instead of 9 

T(l)(x, y), the quantity 8 
7 
6 
5 
4 
3 
2 
1 
o 

786 
779 
766 
745 
715 
672 
612 
521 
360 

787 
781 
768 
748 
719 
679 
626 
553 
458 

791 
785 
773 
755 
730 
696 
655 
605 

796 
791 
781 
765 
744 
718 
687 

802 
798 
789 
777 
760 
740 

809 
806 
799 
788 
775 

816 821 825 827 
813 818 823 
807 814 

For this, the following equations hold: 

4 I (",.11) 

D(ll(x, y) = -- + -- ! D(ll(x', y'), 
c(x, y) c(x, y) ",' .11' 

(x, y) = (0,0), 

(2.5) 

o 

o 2 

799 

3 4 5 6 7 8 9 x 



                                                                                                                                    

536 SANDERS, RUIJGROK, AND TEN BOSCH 

TABLE II. The average trapping time D(21(X,y) (in units of'T) 
for a square lattice with n = 9 in the case of a fixed delay time 

[case (2)]. 

y 
9 740 741 745 749 755 761 767 771 774 775 
8 735 736 740 745 752 759 765 769 773 
7 723 725 730 736 745 753 760 766 
6 704 706 713 722 733 743 753 
5 676 680 690 703 718 732 
4 636 643 659 679 699 
3 580 592 619 650 
2 493 524 573 
1 341 433 
0 0 

0 2 3 4 5 6 7 8 9 x 

and 

have been calculated and are plotted in Fig. 2. 
After the numerical calculation of D(1)(x, y) [Eq. 

(2.5)] was carried out, it was observed that the result 
was identical to the solution for a system with periodic 
boundary conditions, which is treated in detail in 
Sec. 4. We now prove the above-mentioned identity 
by showing that D(l)(x, y), defined as the solution of 
(2.5), also satisfies Eq. (4.1) for the periodic case. 

If (x, y) ~ (0, 0) is a point of the type A (see Fig. 
1), Eq. (2.5) becomes 

D(l)(x, y) = 1 + HD(l)(X + 1, y) + D(1)(x - 1, y) 

+ D(l)(x,y + 1) + D(1)(x,y - 1)]. (2.8) 

If (x,y) is a point of the type B, Eq. (2.5) becomes 

D(1)(n,y) = t + HD(l)(n - l,y) +D(1)(n,y + 1) 

+ D(l)(n,y - 1)]. (2.9) 

1000 

D 

100 

50 

FIG. 2. The average trapping time (in units of 'T) for the two 
cases [(I) variable delay time and (2) fixed delay time) as a function 
of the size of the lattice. 

Since D(l)(n, y) = D(l)( -n, y), we can write (2.9) as 

D(1)(n, y) = 1 + HD(l)( -n, y) + D(l)(n - 1, y) 

+ D(1)(n,y + 1) + D(1)(n,y - 1)] 

+ t + T)-[D(l)(n - I,y) 

+ D(l)(n,y + 1) + D(l)(n,y - 1)] 

- iD(1)(n, y). (2.10) 

Because of (2.9) the last three terms of (2.10) add up to 
zero, so that, for a B point, Eq. (2.8) is also satisfied, 
provided that we read D(1)(n + 1, y) as D(l)( -n, y). 
The same treatment can be given for points on other 
sides. If (x, y) is a corner point (like C in Fig. 1), Eq. 
(2.5) becomes 

D(l)(n, n) = 2 + D(n - 1, n), (2.11 ) 

which can also be written as 

D(l)(n, n) = 1 + HD(1)( -n, n) + D(1)(n - 1, n) 

+ D(l)(n, -n) + D(l)(n, n - 1)] 

+ 1 - tD(1)(n, n) + tD(l)(n, n - 1). 

Because of (2.11) the last three terms again add up to 
zero. This completes the proof of the statement that 
(2.8) and, therefore, (4.1) is satisfied for all (x, y) ~ 
(0,0). 

In Sec. 4 we give the exact solution of the equations 
for D(l)(x, y). 

As a corollary we derive from (4.2) the fact that 
D(1)(1, 0) = D(3)(l, 0) = N - 1, where N is the total 
number of lattice points. This is again Montroll's 
formula.6 

The most important conclusion from this section is 
that for a finite lattice, without requiring periodic 
boundary conditions, an exact and easily calculable 
analytic expression for the average trapping time can 
be given. 

3. ESCAPE OF THE EXCITON 

Consider case (2), in which an exciton spends a 
fixed time 'T on a lattice site, before it jumps. This case 
will now be modified by assuming that the exciton may 
decay spontaneously and that its lifetime is 'To' The 
probability that in the time 'T such a decay has occurred 
is equal to (1. = 1 - e-T'To• Thus IX is supposed to be 
independent of the number of nearest neighbors. For 
T « 'To this becomes (J. ,-..J 'T/'To « 1. 

Let Ta(x, y) be the average time elapsed between the 
deposition of the exciton at the point (x, y) and either 
the moment the exciton falls into the trap or the 
beginning of the interval in which the exciton will 
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TABLE III. The average total delay time Da(x, y) (in units of T) 
for a square lattice with n = 9 and IX = 0.002 in the case of a 

fixed delay time [case (2)]. 

Y 
9 304 304 306 307 309 312 314 315 316 317 
8 302 302 304 306 308 311 313 315 316 
7 297 298 300 302 305 308 311 313 
6 290 291 294 297 301 305 308 
5 279 281 284 290 295 301 
4 263 266 272 280 288 
3 241 246 257 269 
2 206 218 238 
1 143 181 
0 0 

0 2 3 4 5 6 7 8 9 x 

decay. Then Ta(x, y) satisfies 

or 

T«(x, y) = (1 - ex.) (7" + _1 - (yJTaCx ', y'»), 
c(x, y) x'.y' 

(x, y) ~ (0,0), 

TaCO,O) = 0 (3.1) 

D«(x, y) = (I - ex.)(1 + _1_ (yJDix', y'»), 
c(x, y) X',y' 

(x, y) ~ (0, 0), 

DaCO, 0) = 0, (3.2) 

with TaCx,y) = 7"Da(x,y). 
If no trap is present, the time Ta is the same for all 

lattice points. From (3.1) one then obtains T« = 
(1 - ex.)7"/ex. = (1 - ex.)7"0, as it should be, regarding 

10.0.0. 

Da(n) 

1 
50.0. 

0.0.~~---L--~~---5~-J--~--~--~~10. 
3 

-------;~_ Clx10 

FIG. 3. The average time (in units of T) between injection and 
either trapping or escape of the exciton as a function of the proba
bility IX that it decays spontaneously in the time T. 

TABLE IV. The average probability of escape Ea(x,y) for a 
square lattice with n = 9 and IX = 0.002. 

y 

9 0.610 0.611 0.613 0.617 0.621 0.625 0.629 0.632 0.634 0.635 
8 0.606 0.607 0.610 0.614 0.618 0.623 0.628 0.631 0.634 
7 0.597 0.598 0.602 0.607 0.613 0.619 0.624 0.629 
6 0.582 0.584 0.589 0,596 0.604 0.612 0.619 
5 0.560 0.563 0.571 0.581 0.592 0.603 
4 0.528 0.534 0.546 0.562 0.578 
3 0.483 0.493 0.515 0.540 
2 0.412 0.438 0.477 
1 0.286 0.363 
0 0 

0 4 

the definitio.n of T«(x, y). The average path length is 
equal to D«(x, y). Equations (3.2) have been solved 
for a number of values of ex. and n. In Table III we give 
the result for ex. = 0.002 and n = 9. The average value 
is 

which is proportional to the average time the exciton 
spends on the lattice; it is plotted in Fig. 3 and com
pared with (1 - ex.)/ex. (no trapping center). 

Another quantity of interest is the probability that 
an exciton, which is inserted in the point (x, y) of the 
lattice, will not be trapped, but will eventually escape. 
Let this probability be denoted by Ea(x,y). It clearly 
satisfies the equations 

(1 - IX) (x.y) " 

EaCx, y) = IX + -- L Eaex, y), (x, y) ~ (0,0), 
c(x, y) X'.y' 

Ea(O, 0) = 0, (3.4) 

If no trap is present, the escape probability should 
be unity, which is indeed the solution of (3.4) for this 

1.0. 

Ea(n) 

! 
0.5 

a,.,O non periodic lattice -,.,. periodiC lattice 

0..0. o.~----....I...-------l.------"--------L------.J 

ClX10.2 5 ----
FIG. 4. The probability of escape as a function of the probability 
IX that spontaneous decay of the exciton occurs in the time T. 
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case. For IX = 0.002 and n = 9 the values of Eg,(x, y), 
as obtained from (3.4), are given in Table IV. The 
average escape probability 

1 
Ein) = 2 ~ Eix, y) (3.5) 

(2n + 1) "'.1/ 

is plotted in Fig. 4 (lower curves for n = 2, 5, and 9). 

4. PERIODIC BOUNDARY CONDITIONS 

In this section an exciton again performs a random 
walk on a square lattice with (2n + 1)2 sites, one of 
which is a trap. Case (2) will be supposed to hold, 
which means that the exciton spends a fixed time T on 
a lattice site before it jumps to a nearest neighbor. 
Periodic boundary conditions hold if this lattice is 
wrapped on a torus. This means that the point (x, y) 
is to be identified with the point (x + 2n + 1, y) and 
also with the point (x,y + 2n + 1). Let the trap be in 
(0, 0), and let the average time before trapping of an 
exciton, which starts at (x,y), be indicated by T(3J(X,y). 
Defining D(SJ(x, y) by T(SJ(x, y) = T D(SJ(x, y), we 
easily see that this function satisfies the equations 

D(3J(X,y) = 1 + HD(3J(X + l,y) + D(SJ(x - 1,y) 

+ D(SJ(x,y + 1) + D(SJ(x,y - 1)], 

(x, y) :;i: (0,0) 

D(SJ(O,O) = O. (4.1) 

These equations are solved with Fourier transforma
tion. One finds, as can be checked by substitution, 

D(SJ(x, y) 

= 2~' sin2 ([17/(2n + 1)](jlx + j2Y)} 

ili. sin2 [17jl/(2n + 1)] + sin2 [17j2/(2n + 1)] , 

(4.2) 

where jl' j2 = 0, ± 1, ±2,'" , ±n, but the point 
(A ,N = (0,0) is excluded. We found numerically 
and proved in Sec. 2 that this function is identical 
to DUJ(x, y), which was given in Table I. 

The average path length 

D3(n) = 1 ~ D(3J(X, y) 
(2n + 1)2",,1/ 

~an also be calculated analytically, and one obtains 

Da(n) = ~ [sin2 (~) + sin2 (~)J-l. 
ili2 2n + 1 2n + 1 

(4.3) 

In order to find the behavior of this function for large 
n, one introduces the new variables x = 17h/(2n + 1) 

andy = 17j2/(2n + 1) and the increments Llx = Lly = 
17/(2n + I). Equation (4.3) can then be written as 

D (n) = N ~' LlxLly 
3 172",,1/ sin2 x + sin2 y' 

(4.4) 

where N = (2n + 1)2 is the total number of lattice 
sites. For N - 00 the summation can be replaced by 
an integration 

D ( ) .....- N I' dx dy 
S n - . 

172 sin2 x + sin2 y 
(4.5) 

If the prime were discarded, the integral would di
verge in the origin. The main contribution to D3(n) 
can therefore be calculated by excluding a circular 
region of radius R = 17/(2n + 1) around the origin. 
This leads (by introducing polar coordinates) to 

N i i211 r dr drp N Ds(n) ~ - 2 or Ds(n) ~ - log N. 
172 R 0 r 17 

(4.6) 

This is the leading term in the following asymptotic 
formula, derived by MontrolF: 

Da(n) ~ (N/17) log N + O.l95056N - 0.1170 

- 0.05IN-l + O(N-2). (4.7) 

This last expression has been compared with the exact 
sum (4.3), and excellent agreement with the calcula
tions of MontroU is obtained. There is, however, 
reason to distrust the third decimal of 0.1170 in (4.7). 

For other square lattices one can derive expressions 
similar to (4.3). For a 3-dimensional simple cubic 
lattice, one obtains 

Da(n) = ~ ~'[sin2 (~) + sin2 (~.) 
2 hi.is 2n + 1 2n + 1 

+ sin2 (~)J-l. (4.8) 
2n + 1 

In this case one can, in order to find the asymptotic 
behavior of D3(n), replace the summation by an inte
gration, which is now convergent. The result is 

Da(n)""'" WN, 

where W is Watson's integral 
'IT 

(4.9) 

1 fII dx dy dz 
W = (217)3 1 _ t(cos x + cos Y + cos z) 

-IT 

= 1.516386' ... (4.10) 

MontrolF obtained formula (4.9) in a different way. 
For the periodic square lattice, one can calculate the 

escape probability if at each step the exciton has the 
probability IX of leaving the lattice. As in (3.4), this 
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escape probability for an exciton which starts at 
(x,y) satisfies the equations 

("',II) 

E~(x, y) = IX + HI - IX) I E~(x'. y'), (x, y) ;o<!' (0, 0), 
',1",'1/' 

E~(O,O)=O (4,11) 

or, if C .. (x, y) = 1 - E~(x, y) is the capture proba
bility, 

(""y) 

C..(x, y) = to - IX) I c..(x', y'), (x, y) ;o<!' (0,0), 
x' ,u' 

(4,12) 

The solution to these equations is written in the form 

~ " ( 27T.;IX ) ( 27Tj2Y ) C..(x,y)="",A..(ll,h)cOS -- cos -- , 
hi. 2n + 1 2n + 1 

for all (x, y), (4.13) 

and a closed expression for A .. Ul ,j2) can be derived. 
One obtains 

( 4.14) 

with 

Sa; = I B..{jl ,j2) (4,15) 
3112 

and 

,. 1 [ (1 - IX) 
B..(ll,h) = N 1- -2-

x (cos 27Tjl + cos 27Tj2 )J-1
. (4.16) 

2n + 1 2n + 1 

The probability of capture, averaged over all lattice 
points, is 

"',II 

For IX = 0,002 and n = 9 the values of E~(x, y), as 
obtained with (4.13)-(4.16), are given in Table V and 
should be compared with Table IV. The average 
escape probability E~(n) = 1 - Cin) is plotted in 
Fig, 4 (upper curves) and must be compared with the 

TABLE V. The average probability of escape E~(x, y) for a 
periodic square lattice with n = 9 and IX = 0.002. 

y 

9 0.624 0.625 0.627 0.631 0.636 0.640 0.645 0.649 0.651 0.653 
8 0.619 0.620 0.623 0.627 0.632 0.638 0.643 0.647 0.650 
7 0.609 0.611 0.614 0.620 0.626 0.633 0.639 0.643 
6 0.594 0.596 0.601 0.608 0.617 0.625 0.633 
5 0.571 0.574 0.582 0.593 0.605 0.616 
4 0.539 0.544 0.557 0.573 0.590 
3 0.492 0.503 0.525 0.550 
2 0.420 0.446 0.486 
1 0.291 0.370 
0 0 

o 2 4 6 9 x 

corresponding lower curves for E..(n), In both cases we 
took n = 2, 5, and 9. 

The difference between the periodic and non periodic 
case is seen to be negligibly small, For all practical 
purposes, one can therefore calculate the average 
escape probability with the formula (4.17). 

5. DISTRIBUTION OF TRAPPING CENTERS 

Consider again the random walk on a square lattice 
with one trap, This trap, however, has not a definite 
position, but has the probability Pen, m) of being at 
the lattice point (n, m). Let Dn,m(x, y) be the average 
path length of an exciton, which starts at (x, y), with 
the trap fixed at the point (n, m). This average path 
length satisfies the equations [compare with (2,6)] 

1 (x ,11) 

Dn,m(x, y) = 1 + -- I Dn,m(x', y'), 
c(x, y) x' .y' 

D",m(n, m) = O. 

(x, y) ;o<!' (n, m), 

(5.1) 

The quantity of interest is the path length averaged 
over the starting point and over the position of the 
trap, i,e" 

- 1 ~ -
D = (2n + 1)2;; D(x, y), (5.2) 

with 

D(x, y) = I Pen, m)D",,,,(x, y). (5.3) 
n,m 

On substitution one derives from (5.1) the following 
equations for 15(x, y), valid for all points (x, y): 

1 ("',II) 

D(x, y) = 1 - P(x, y)K(x, y) + -- I 15(x', y'), 
c(x, y) x' .11' 

(5.4) 
with 

1 ('" .11) 

K(x, y) = 1 + -- I D""Y(x', y'). (5.5) 
c(x, y) ",'.11' 

The last equation shows that K(x, y) may be inter
preted as the average path-length traveled by an ex
citon, when it returns for the first time to the starting 
point (x, y). Using this interpretation, we will sepa
rably calculate the function K(x,y) later in this section, 

Turning to Eq. (5.4), we should observe that D(x, y) 
cannot be solved uniquely from it, since an arbitrary 
constant can be added to the solution. An auxiliary 
function F(x, y) is therefore defined by the require
ments that F(x, y) satisfy (5.4) for all (x, y) and 
F(O, 0) = O. Then 

15(x, y) = F(x, y) + D(O,O). (5.6) 
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D(x, y) can be calculated in the following steps: 
(i) Calculate D(O, 0) from Dn,m(O,O) with Eq. 

(5.3). 
(ii) Find K(x, y) for all (x, y). 

(iii) Solve 

1 (X,y) 

F(x, y) = I - P(x, y)K(x, y) + -- 2 F(x', y') 
e(x, y) ",',y' 

for all (x, y) together with F(O, 0) = 0. (5.7) 

As an auxiliary theorem to the first point, we now 
show that 

Dn,m(O, O) = teen, m)Do,o(n, m). (5.8) 

Both Dn,m(O, 0) and Do,o(n, m) must be calculated as 
an average over all possible paths P connecting (n, m) 
and (0,0). 

Let W(P) be the probability for such a path, when 
it is traversed from (n, m) to (0,0), and W'(P), when 
it is traversed in the opposite direction. Each of these 
probabilities can be written as the product of a number 
of factors t, t, and !: 

and 

where a is the number of steps from a corner point to 
a neighbor, b is the number of steps from a side point to 
a neighbor, c is the number of steps from an interior 
point to a neighbor, and a', b', and e' are defined in 
the same way, but for the path (0,0) -+ (n, m). 

It is easy to convince oneself that: If (n, m) is an 
interior point, then a' = a, b' = b, c' = e; if-en, m) is 
a side point, then a' = a, b' = b - 1, e' = e + 1; 
if (n, m) is a corner point, then a' = a-I, b' = b, 
e' = e + 1. From this it follows that for any path P, 
connecting (0,0) with an arbitrary point (n, m), one 
has 

W'(P) = te(n, m)W(P). 

This result immediately implies (5.8). 
Since Do,o(n, m) is the average path length to reach 

the point (0,0) from (n, m), it equals the quantity 
D(2)(X, y) from Sec. 2. This quantity can be evaluated 
numerically from Eq. (2.6), as has been done for a 
few cases (Table II). This calculation is independent of 
the functions pen, m). 

Since with Eqs. (5.3) and (5.8) 

D(O, 0) = t 2 c(n, m)P(I1, m)Do,o(n, m), (5.9) 
tl,m 

the average value D(O, 0) can be found numerically 
for any given distribution P. 

As the next step in solving Eq. (5.7), the average 
path length K(x, y) upon the first return to the point 
(x, y) must be calculated, Consider the random walk 
of a particle on a lattice, and let it take a large number 
of steps, say M. Let njI1 (x,y) be the number of times 
the particle is found at the point (x, y), Then one has 

K(x, y) = lim M (5.10) 
31-->00 nM(x, y) 

For a very long walk the probability p(x, y) of finding 
the particle at the point (x, y) becomes independent of 
the starting point, and therefore 

( ) 
_ l' nJix, y) 

P x, Y - 1m , 
J1--+oo M 

(5.11) 

so that 

K(x, y) = _1_ . 
p(x, y) 

For M -+ 00, the probability of finding the particle at 
the point (x,y) is stationary, and p(x,y) satisfies the 
equation 

(""y) p(x', y') 
p(x, y) = 2 (' ')' 

",',y' ex, y 
(5.12) 

This equation expresses how p(x, y) can be calculated 
in terms of the probabilities of finding the particle at 
the neighboring points. The solution of (5.12) is 

p(x, y) = poe(x, y), 

where the constant Po is determined by the requirement 

This gives 

Thus 

2 p(x, y) = 1. 
x,y 

POl = 2 c(x, y) = 8(2n2 + 11). 
X.'JI 

K(x, y) = _1_ 2 c(x', y') 
e(x, y) ",' ,y' 

= _8_ (2n 2 + n) 
e(x, y) 

= _4_ (N - .jN), (5.13) 
c(x, y) 

in which N is the total number of lattice points in the 
lattice: N = (2n + 1)2. It further appears that, be
cause it is obvious that K(O, 0) = Do,o(1, 0) + 1, Eq. 
(5.13) also is a proof of Eq. (2.7). 

As the last step in determining D(x, y), we can now 
solve F(x, y) from Eq. (5.7) in a numerical way with 
the aid of Eq. (5.13). Adding the numerical result of 
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TABLE VI. The average path length D(x,y) for a square lattice 
with n = 9 and a trap distribution with r = 6 [cf. Eq. (5.14)]. 

y 
9 705 706 708 712 717 722 727 731 734 734 
8 701 702 705 709 715 720 725 730 732 
7 694 695 698 703 709 715 721 726 
6 684 685 689 695 701 709 716 
5 672 674 678 684 692 701 
4 660 661 666 674 683 
3 648 650 655 663 
2 638 640 646 
1 632 634 
0 630 

o 2 3 4 5 6 7 8 9 x 

Eq. (5.9) to F(x, y), we obtain the unique solution for 
15(x, y), which gives the average path length 15 ac
cording to Eq. (5.2). 

This sequence of steps (i)-(iii) has been performed 
for n from 2 to 9 with the distribution 

Pen, m) 

= exp - ~ exp - . ( n2 + m2) [ (n12 + mI2)]-1 
r2 n' ,m' r2 

(5.14) 

This distribution of traps is symmetric around the 
center of the lattice and has a range r. A uniform dis
tribution of traps is obtained for r » n. It was some
what of a surprise to find that for such a uniform 
trap distribution the path length averaged over all trap 
positions, i.e., 15(x, y), was not quite constant. For 
n = 9 and r = if) it varied between 656.06 for a 
corner point and 664.59 for the center. 

In Table VI we give 15(x, y) for n = 9 and r = 6. 
The effect of distributing the trapping centers can be 
judged by comparison with Table II. Another way is to 
plot D, the average value of 15(x,y) [Eq. (5.2)], as a 
function of the range parameter r of the distribution 
function Pen, m). For a number of values of n the 

D n-9 

1 
500 

n.7 

o L...~~--L~_' __ >~~"_~L.~~_.~~'--'--' 
o 5 10 15 • r 

FIG. 5. The average path length as a function of the range r of the 
trap distribution [cf. Eq. (5.14)]. 

result can be seen in Fig. 5. It is seen that, although 
15(x,y) may vary considerably with r, D changes very 
little with r going from zero to infinity. 

We finally note that the calculation of K(x, y) in 
step (ii) gives rise to a general theorem. Consider a 
connected, but otherwise arbitrary finite network of 
points. Let the point A be connected with c(A) other 
points of the network. Then the average number of 
steps a random walker takes, before he returns to his 
starting point A, is, according to (5.13), equal to 

K(}.) = _1 L ceft). 
c(A) 11 

(5.15) 

Although this result probably can be found in the 
literature, it was perhaps worthwhile to give this 
simple proof. 
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A straig~tforward method is given for calculating the moments of the joint eigenvalue distribution 
correspondmg to an ensemble of random Hermitian matrices. The method enables one to calculate 
the averages using the matrix element distribution. Thus an explicit expression for the joint eigenvalue 
distribution is not required. 

1. INTRODUCTION 

In recent years there has been considerable success 
in predicting the statistical properties of the high
lying energy levels of complex systems using ensembles 
of random matrices. l Most of the work to date has 
been based on ensembles which are representationally 
invariant (i.e., the joint distribution for the matrix 
elements, which mathematically specifies the ensemble, 
is a function only of traces of various powers of the 
Hamiltonian matrix). For ensembles of this type the 
joint eigenvalue distribution and the distribution of 
widths can be obtained explicitly.2-6 

Recently there has been interest in the problem of 
how a small time-reversal odd term in the Hamiltonian 
of a complex system would influence the statistical 
properties of the energy levels. 7- l4 Such investigations 
have led to interest in ensembles which are not 
representationally invariant. 

For such ensembles (with the dimensionality of the 
matrices arbitrary) it does not seem feasible to obtain 
exact expressions for the various distributions in
volving the eigenvalues and widths. Thus most of 
what has been done involves approximations and 
numerical calculations. 7-14 

However, we shall show that, even if the joint 
eigenvalue distribution is unknown, its moments can 
be calculated exactly using the matrix element 
distribution. 

2. MATHEMATICAL DEFINITION OF 
ENSEMBLES AND ENSEMBLE AVERAGES 

Consider an ensemble of N X N Hermitian 
matrices. We shall denote a typical member of the 
ensemble as H. The real and imaginary parts of H will 
be denoted by Rand S, respectively. Since H is 
Hermitian, 

Rii = Ru , 

Sij = -Sit' i ':fi j, 
and 

Sii = O. 

(1) 

(2) 

(3) 

The ensemble can be specified mathematically by 
the joint distribution for the N2 independent variables, 
RiJ , i ~ j, and Sii' i > j. We shall denote this joint 
matrix element distribution as p(H). The volume 
element in this N2-dimensional space will be denoted 
by dH, where 

(4) 

All of the variables can be assumed to vary inde
pendently from - 00 to + 00. 

The properties of the physical system being con
sidered can be used to impose certain restrictions on 
the matrix element distribution.s.ls However, at this 
point the only restriction we impose on p(R) is that 
it is normalized to unity. 

To obtain the joint eigenvalue distribution corre
sponding to p(H), one first makes a change of variables 
from the N2 variables (Rij, Sii) to the N eigenvalues 
E;, i = 1, ... , N, and N(N - 1) other variables, say 
CPa., ex = 1,2, ... ,N(N - 1).4.5 Thus, we have 

p(H) dH = peE, cp)J(R, S: E, cp) dE dcp, (5) 

where peE, cp) is p(H) expressed in terms of the new 
variables, J(R, S: E, ep) is the Jacobian of the trans
formation, 

(6) 

and 
dep == IT dept. (7) 

The joint eigenvalue distribution peE) is then 
obtained by integration over the ept, i.e., 

PeE) = J depp(E, ep)J(R, S: E, ep). (8) 

If Q(E) is any function of the eigenvalues, its en
semble average (Q) is defined as 

(Q) = f p(E)Q(E) dE. (9) 

542 
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It is clear that 

f P(E)Q(E) dE = f dE f d4>Jp(E, 4»Q(E) 

= f P(H)Q(H) dH, (10) 

where Q(H) is Q(E) expressed in terms of the variables 
Rij and Sij . Thus, the ensemble average of a function 
of the eigenvalues can be obtained either by using the 
joint eigenvalue distribution directly or by expressing 
the quantity of interest in terms of the matrix elements 
and averaging using the matrix element distribution. 

In what follows it will be assumed that p(E) is the 
symmetrized joint eigenvalue distribution. That is, 
p(E) is invariant with respect to any permutation of 
the indices on the E i • Thus, (Q(E» is invariant to any 
permutation of the indices on the E; in the expression 
for Q(E). In particular, 

(E~lE~1 ... E:::) = (E~lE~' ... E:!."'), (11) 

provided that the ill' ~ = 1, ... , m, are distinct. 

3. EIGENVALUE MOMENTS IN TERMS OF 
AVERAGES OF TRACES OF THE 

HAMILTONIAN MATRIX 

As shown above, ensemble averages of functions of 
the eigenvalues can be evaluated using the joint 
matrix element distribution if the function can be 
written in terms of the variables Rij and Sij. In 
general, this is not possible since the explicit functional 
dependence of the eigenvalues on the matrix elements 
for an N x N matrix is not known. However, in 
some cases the explicit functional relationship is not 
required. In particular, for quantities of the form 

m 

Q(E) = II E:«, (12) 
",=1 

where the n", are nonnegative integers, the relationship 

where n is a nonnegative integer and 

Tr HO == N, 
is sufficient. 

(13) 

(14) 

To evaluate averages of this form, we consider the 
ensemble average of the quantity 

m 

T(H) == II Tr H n
",. 

,,=1 

From Eq. (13) it trivially follows that 

(T(H» = ~ (E~l ... Er:). 
it .. ··• i '" 

(15) 

(16) 

The m summations on the right-hand side can be re
written as 

~ = ~ + ~' + ~' + ... 
il.···.it .. il=i2="'=im I'I. i2=··'=i", i z.il=i3='·'=i", 

+ ~' + ~' + ... 
i m .i1=···=im-1 il=it,ia=it="'=im 

+ ~' + ... + ~' , (17) 
i m-l=im ,it=···=im.-2 i1.il ... ·,im 

where the prime on a summation sign means that 
only terms where the remaining indices are all unequal 
are to be included. Further, from Eq. (II) it is seen 
that each term in any of the new sums is identical. 
Thus, the summation signs just introduce a multipli
cative factor 'Y}"" where ~ + I is the number of re
maining summation indices and 

'Y}" == N(N - 1) ... (N - ex). (IS) 

Thus Eq. (16) can be rewritten as 

m 

(T(H» = N(En) + 7Jl~D (E~IlE;-n,,) 
«=1 

+ 'YJ1 };D (E~tl+np E;-n,,-np) + ... 
,,>/l 

+ 'YJm_1(E~lE~' ... E:''''), (19) 
where 

m 

n =};n" 
0:=1 

(20) 

and where '2.D means that the sum is to include only 
"distinct" terms.l6 

From Eq. (19) it can be seen that if 
(E~lE~' ... E;I), t = 1, 2, ... , m - 1, are known in 
terms of averages of traces of H, for arbitrary non
negative integers S", then (E~l E~' ... E::''') can 
easily be found for arbitrary nIl in terms of averages 
of traces of H,17 Thus, it is clear that (E~l E~' ... E::'''') 
can be found by an iterative procedure. 

We begin by considering m = 1. Now 

(Tr Hn) = '2. (Er> = N<E~), (21) 
i 

or 

<E~) = 1. (Tr Hn). 
N 

(22) 

Proceeding to m = 2, we have 

(Tr Hnl Tr Hn,) = 2 (ErlE~I) 
i. j 

= N(E~> + ''h(E~lE;·). (23) 

From Eqs. (22) and (23) it then follows that 

(24) 
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where 

(Tr Hn, Tr Hna)' == (Tr WI' Tr H n.) - (Tr Hn). (25) 

For m = 3 

Tr Hn, Tr Hn• Tr Hn 3) = 2: (Er'E7'E~3) 
i,j,k 

3 

= N(E~) + 1h2:(E~aE~-na) 
070..0:1 

+ 1J2(E~'E~2E~3). (26) 

Combining equations (22), (24), and (26), we obtain 

(E~'E~2E~3) = 1- (Tr Hn, Tr Hn2 Tr Hn3)' 
1J2 

- J1(Tr H n", Tr Hn-na>,). (27) 

Obviously this procedure can be continued indefinitely. 
For example, the reader can verify that 

(E~'E~2E;3E;1) = rl;l (Tr Hn , Tr Hn2 Tr Hna Tr Hn4)' 

4 - L (Tr H n" Tr Hnp Tr Hn-na-np)' 
a>p=l 

4 

+ 2.2 (Tr Hna Tr Hn-na)' 
a=l 

+ ",t<Tr Hn,+n"Tr Hn-n,-na),). (28) 

In all of the above (T(H»' == (T(H» - (Tr Hn). 
At this point, one might try to generalize to the 

case where m is arbitrary. First of all it follows from 
mathematical induction that 

<E~'E~2 ... E;:'m) 

= _1_ I L CSIS""s",(Tr HS
' ••• Tr HS

,,)', 

1Jm-l a=2 S,.S2 ... ·. s" 
In ~ 2, (29) 

where the sum includes only those (Sl' S2, ..• , sex) 
such that each Si is a sum of the ni and each ni occurs 
once and only once. The sum is to include only sets of 
Si for which (Tr HS' ... Tr H S

,,)' are distinct for 
arbitrary ni' For example, if Sl = n1, S2 = n - n1 is 
included, then Sl = n - n1, S2 = ni need not be in
cluded. Of course, for a particular set of ni some of 
the terms in the sum may be identical. For example, 
(nl' n2 + na, n - n1 - nz - na) and (nz, n1 + n3, 
n - n1 - na) are distinct for arbitrary ni and are thus 
both included in the sum. However, if nl = n2, the two 
averages will be identical. 

Some properties of the coefficients CS''''sa can 
easily be deduced. First of all, the coefficients are in-

dependent of n. Second the coefficients depend only 
on In and not on the particular values of the ni • Both 
of these can be established using mathematical induc
tion. 1B•19 Finally, since the result is invariant with 
respect to a permutation of n i , terms of the same type 
will have the same coefficient. 20 Thus, for example, 

The explicit calculation of the coefficients for the 
general case is not trivial. Basically the problem of 
determining them is a counting problem. One must 
trace through the origin of such terms, taking into 
account the appropriate sign and numerical coeffi
cients. A general procedure for this can be formulated, 
but it is cumbersome. Thus, we shall not attempt to 
state it here. 

Of course, for any particular case, i.e., fixed m, the 
required coefficients can be obtained as above for 
m = 1,2,3, and 4. This, of course, becomes more and 
more laborious as m increases. There is another 
approach which seems preferable. 21 

One simply writes out (29) for the case of interest, 
where the Cs are to be treated as unknowns. Since 
the C's are independent of the n, one then chooses 
special cases, i.e., chooses particular values for the n. 
If there are m independent C's, one must be careful to 
choose m special cases which give independent equa
tions. The problem thus reduces to the solution of m 
simultaneous linear equations. 

Two particular cases which are not included in the 
above results are given here for reference. They are 

(EIE2EaE4E~) 

= 1Ji1[«Tr H)4 Tr H2)' - 24(Tr H Tr H 5
)' 

- 18(Tr H2 Tr H4)' - 8«Tr H3)2)' 

and 

j- 12«Tr H)2 Tr H4)' + 20(Tr H Tr H2 Tr H3)' 

+ 3«Tr H2)3)' - 6«Tr H)2(Tr H2)2)' 

- 4«Tr H)3(Tr H3»'], (31) 

(EIE2 E3E4E5E6) 

= 1Js1[«Tr H)6)' + 144(Tr H Tr H 5
), 

+ 90(Tr H2 Tr H4)' + 40«Tr H3)2)' 

- 90«Tr H)2 Tr H4)' - 120(Tr H Tr H2 Tr H3)' 

_ 15«Tr H2)3)' + 40«Tr H)3 Tr H3)' 

+ 45«Tr H)2(Tr H2)2)' - 15«Tr H)4 Tr H2)']. 

(32) 

These two results will be used in the following 
sections. 
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4. EIGENVALUE MOMENTS IN TERMS OF 
AVERAGES OF THE MATRIX ELEMENTS 

Since Tr H" can be written down explicitly in terms 
of the Ri; and Si;, for any particular n, where n is a 
nonnegative integer, it is clear that, in principle, 
(E~l ... E';,.m) can be evaluated for a particular set of 
ni if p(H) is given. To this point, p(H) was completely 
arbitrary. For simplicity, we shall restrict our discus
sion from this point to distributions of the form 

p(H) = IIf(Rii) II g(R;k)h(S;k)' (33) 
j>k 

Note that all of the variables are statistically 
independent. Further, all Rii , i = I, ... , N, have the 
same distribution. Similarly, for the Rik and S;k' 
Finally, we assume that 

(R~in+1) = (R~~+l) = (S~~+l) = 0, n = 0, 1,2, .... 

(34) 
It follows immediately from this that 

(34') 

if 2a na is odd. It should be noted that most of the 
ensembles considered to date are members of this 
restricted class, defined by (33) and (34). 

In addition, it is easily seen that for ensembles 
contained in the above class 

(R~~, ... Ri:irR~:kl ... R~:k8Sf:ml ... Sf,'m,) 
r s t 

= II (xni) II ({Re YF'i) II ({1m yyk), (35) 
i~l j~l k~l 

and 

(Hi~!' ... Hi~i,HFJ, IHi,lr1 I
Q1 

••• Hf:ks IH;,kl') 
r s 

= II (xni) II (yPi lyIQ,), (35') 
i=l ;~1 

where x and y denote a typical diagonal element, say 
Hll , and a typical off-diagonal element, say H21 , 

respectively. It has, of course, been assumed that the ia , 

ex = 1, ... , r, are distinct, the pairs (ja' ka), ja > 
ka' ex = I, ... , s, are distinct, and the pairs (la, ma), 
la > ma, ex = I, ... , t, are distinct. 

Consider first (E~lE~2 ... E;"m), where.n = 2 ni is 
odd. Since 2i~1 Si = n, oc = 2, ... ,m., for those 
terms included in the sum in Eg. (29), and since 

Tr HSi = '" H .. H. . . .. H· . H·· (36) . ,k . 3I.12 12.13 )81'_1381 3;~i31' 
11. J 2·····lIl i 

it is clear that each term in the sum over the Si is a 
sum of terms each of which is a product of the n 
matrix elements. Thus, from Eg. (34') it follows that 

TABLE I. Averages of traces, required for eigenvalue moments 
with n = 2, expressed in terms of averages of matrix elements. 

(Tr H2) 

«Tr H)2) 

every term vanishes. Thus, 

(x2 ) 

N 
N 

(E~' ... E':,;n) = ° 
if n is odd. 

(1)'1 2
) 

1'}1 
o 

(37) 

Consider next the case when n is even. The evalua
tion of (E~'" .. E';,.m) is very straightforward. One 
simply inserts the expressions for Tr H". [Eq. (36)] into 
Eq. (29), rewrites it in terms of the R ii , R i;, and S,j and 
evaluates the average term by term. Many terms 
vanish and many are equal. These results follows from 
(34) and (35), respectively. 

However, it is clear that the complexity of this 
calculation increases as m increases because the 
number of averages required likewise increases. In 
addition, as the ni increase, the traces involve higher 
powers of H. As the power increases, the corre
sponding expression for the trace in terms of the 
matrix elements becomes more complicated. Thus, 
the general case seems difficult at best. Thus, for 
definiteness we shall restrict our discussion to the 
cases n = 2, 4, and 6. 

In Tables I-III the averages of the traces required 
to evaluate all of the eigenvalue moments with 
n = 2, 4, and 6 are given. The left-hand column 
indicates the quantity being averaged, the first row 
indicates the matrix element averages required, and 
the other entries denote the corresponding coefficients. 
Thus, for example, from Table II we have 

(Tr H4) = N(x4) + 41Jl(x2)(IYI2) + 1Jl(lyI4) 

+ 21J2{(IYI2)}2; (38) 

the other averages can be read off the tables in a 
similar manner. 

The expressions for all (E~l ... E;:;n) with n = 
2, 4, and 6 can now be obtained by inserting the 
results given in Tables I-III into Eqs. (22), (24), (27), 

TABLE II. Averages of traces, required for eigenvalue moments 
with n = 4, expressed in terms of averages of matrix elements. 

(X4) {(x2) }" {(x2)(lyI2) } (lyI4) {(lyI2)}2 

(Tr H4) N 0 41'}1 1'}, 21'}. 
(Tr H3 Tr H) N 0 31'}1 0 0 
«Tr H2)2) N r/1 2N1'}1 21'}1 (N + 1)1'}2 
(Tr H2(Tr H)') N 1'}, N1'}l 0 0 
(Tr H4) N 3r/1 0 0 0 
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TABLE III. Averages of traces, required for eigenvalue moments with n ... 6, expressed in terms of averages of matrix elements. 

(x') (x&)(x2 ) {(Xl)}' (x')(lyl') {(Xl) }2(lylt) (x')(lyl&) (x'){{/yl') }I (Iyla) (ly,4)(lyI2) {(Iy")}" {(y')}" 

(Tr He) N 0 0 61]1 31]1 91]1 151]a 1]1 61}2 (5N - 12)1]2 1], 
<Tr HIiTr H) N 0 0 51}1 51]1 51]1 101]2 0 0 0 0 
(Tr H4Tr HI) N 1]1 0 (N + 4)1]1 4(N - 1)1]1 (N + 8)1]1 2(3N + 2)1]2 21}1 (N + 9)1]8 2(N~ - N - 4)112 0 
<Tr H'('fr H)2) N 1]1 0 41]1 4N1]1 N1]l 2N1]2 0 0 0 0 
«Tr H')!) N 0 0 61]1 0 91]1 91], 0 0 31]1 31]. 
(Tr HI Tr H2 Tr H) N 1]1 0 (N + 3)1]1 3(N - 1)1}1 61]1 3(N + 1)1]2 0 0 0 0 
(Tr H"(Tr H)3) N 31]1 0 31}1 9(N - 1)111 0 0 0 0 0 0 
«('fr H2)") N 31]1 1]. 3N111 31]~ 6N1], 3N(N + 1)1]. 4111 6(N + l)1'JI (N + l)1].(1'J1 - 4) 0 
«('fr HI)8(Tr H)2) N 3111 1'J. 2N1'J1 21]~ 2N1]1 N(N + 1)1]. 0 0 0 0 
(Tr H'(Tr H)4) N 71'Jl 31'J! N1'Jl 31'J~ 0 0 0 0 0 0 
«Tr H)6) N 151]1 I51'JI 0 0 0 0 0 0 0 0 

!-' 
"TI 

::: 
("l 

\j 
0 
Z 
> 

TABLE VI. Eigenvalue moments, with n ==6, expressed in terms of averages of matrix elements. t"'" 
\j 

(Xl) (x')(x2 ) {(X2) }' <x&)(lyI2) {(x")}2(lyI2) (x2)(lyl') (x'){ (Iyl')} (lyI6) (lyl')<lyl') {(Iy")}" {(y2)}' 

(£:) 1 0 0 6N1 3N1 9N1 15N1N a Nl 6N1N. (5N - 12)N1N. N1N. 
(£1£:) 0 0 0 -1 2 -4 -5N. -J -6N. -(5N - 12)N. -N, 
(£i£:> 0 1 0 N. 4N-7 Nl (6N -1l)N, 1 (N + 3)N, (2N2 - 7N + 4)N. -N. 
(£~£:) 0 0 0 0 -3 0 -6Nz -1 -6Nz -5NI N. 2N, 
(£1£'£:) 0 0 0 -1 0 0 -(4N - 6) 0 -N. -2N.N. 2 
(£1£;£;) 0 0 0 0 -I -I -(3N - 10) 0 -N. -(2N2 - 12N + 19) -I 
(Ei£:£:> 0 0 1 0 3N. 3 3N,N3 0 3N. N' - 6N' + liN - 4 2 
(£1£.£.£:) 0 0 0 0 0 0 3 0 3 6N3 0 
(£1£'£:£;) 0 0 0 0 -1 0 -2N. 0 -I -(N' - 7N + 14) 0 
(£1£'£3£'£:) 0 0 0 0 0 0 3 0 0 3N" 0 
(£1£'£.£'£'£.) 0 0 0 0 0 0 0 0 0 0 -IS 
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TABLE IV. Eigenvalue moments, with n = 2, expressed in terms where 
of averages of matrix elements. C = {2N(N-1)/2(1.N(N+l)/4yN(N-1lI4} / TT'V2 12. (41) 

1 
o 

N1 
-I 

This is the ensemble which has received the most 
attention in connection with the problem mentioned 
above of a system with a small time-reversal odd term 
in the Hamiltonian.7-12.22 

(28) (with the appropriate choices of the ni ), (31), 
and (32). The results are given in Tables IV-VI. 
These tables are to be read in the same manner as 
Tables I-III. For convenience the symbol 

It is easily verified for this distribution that 

<X2n) = (2n - 1)!!/2n ocn, n = 1,2,3,"', (42) 

<lyI2) = 1/4(1. + 1/4y, (43) 

N; == N - i, i = 1,2,3,'" , (39) (y2) = 1/4(1. - 1/4y, (44) 

has been introduced in these tables. (lyI4) = 3/16oc2 + 2/16ocy + 3/16y2, (45) 

5. A PARTICULAR CASE and 

For definiteness we now consider the Gaussian 
ensemble 

<lyI6) = 15/64oc3 + 9/64ocy2 + 9/64oc2y + 15/64y3. 

(46) 

p(H) = Ce-<xTr R ' exp (-2Yi~;S~;), (40) 

TABLE V. Eigenvalue moments, with n = 4, expressed in terms 

The explicit expressions for the eigenvalue moments 
with n = 2, 4, 6 can now be easily obtained by 
inserting these results into the expressions given in 
Tables IV-VI. The resulting expressions are given in 
Table VII. 

of averages of matrix elements. 

(x·) {(X2)}2 (x")(lyI2) (Iyl·) {(lyI2)}" 

(£t) 1 0 4N1 N1 2N.N1 
(£1£:) 0 0 -1 -1 -2N. 

There are three interesting limiting cases which we 
now consider. If y -+ + 00, the ensemble given by (40) 
goes to the orthogonal Gaussian ensemble.23 If oc = y, 
the ensemble becomes the unitary Gaussian ensemble. 
The results for these two special cases are given in 
Table VIII. 

(£:£:) 0 1 2N. 1 N2N1 
(E1£.£:) 0 0 -1 0 -N3 
(£1£.£3£4) 0 0 0 0 3 

TABLE VII. Eigenvalue moments for the Gaussian ensemble. 

(£:) = (1/4/X) [(N + 1) + (N - 1)£] 
(£l£S) = - (1/4/X) [1 + £] 

(£t) = (1/16oc2) [(2N2 + 5N + 5) + 2(2N2 - N - 1)£ + (2N2 - 3N + 1)£2] 
(£1£;) = - (1/16/X2

) [(2N + 1) + 4(N - 1)£ + (2N - 1)£"] 
(£:£:> = (1/16/X2

) [(N" + N + 1) + 2(N2 - N - 1)£ + (N2 - 3N + 5)£2] 
(£1£.£:> = - (1/16/X') [(N - 1) + 2(N - 2)£ + (N - 3)£2] 

(E1£,EsE.> = (3/16/X2) [1 + 2£ + £2] 
(£D = (1/64oc3) [(5N3 + 22N2 + 52N + 41) + (15N3 + 6N" + 6N - 27)£ + (15N3 - IBN2 + 12N - 9)£2 

+ (5N3 - ION" + ION - 5)£3] 
(E:£:> = (1/64oc3

) [(2N3 + 4N2 + BN + 1) + (6N3 - 4N" + 2N - 19)£ + (6N3 - 16N2 + 16N - 1)£" 
+ (2N3 - BN2 + 22N - 13)£3] 

(£1£;> = - (1/64/X3) [(5N2 + 7N + 9) + (15N" - 19N + 7)£ + (15N" - 23N + 19)£2 + (5N2 - 5N + 5)£"] 
(£:£:> = - 0/64/X3) [(5N" + 3N + 1) + (I5N" - 15N - 9)£ + (15N" - 39N + 27)£2 + (5N2 - 5N + 5)£"] 

(£1£:£:> = - (1/64/X3) [(2N" - 3N + 1) + (6N2 - 19N + 7)£ + (6N" - 25N + 31)£2 + (2N" - 9N + 9)£1] 
(£1£1£:) = - (1/64/X") [(2N" - N + 5) + (6N2 - 15N + 27)£ + (6N" - 23N + 15)£2 + (2N" - 9N + 9)£3] 

(£1£.£:£:> = - (I/64/X8) [(N" - 3N + 5) + (3N" - 13N + 19)£ + (3N" - 17N + 31)£2 + (N' - 7N + 17)£3] 
(£:E:£:> = (1/64/X3

) [(N3 + 2N - 3) + (3N" - 6N" - 15)£ + (3N3 - 12N' + IBN + 3)£2 

(£1£'£3£:) '7 (3/64/X3) [(2N - 1) + (6N - 9)£ + (6N - 11)£2 + (2N - 3)£3] 
(£1£.£'£.£:> = (3/64/X1) [(N - 3) + (3N - 11)£ + (3N - 13)£2 + (N - 5)£3] 

(£IE.£,E.£.£.) = - (15/64/X') [1 + 3£ + 3£' + £3] 

+ (N3 - 6N2 + 20N - 33)£3] 
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TABLE VHf. Eigenvalue moments for the orthogonal and uni
tary Gaussian ensembles. 

Orthogonal (y ~ + CD) 

(E;> 

(E,E,) 

(Et> 

(E,E;> 

(EiE;> 

<E,E2E~) 

(E,E,E.E,) 

(E1) 

(EiE:> 

(£1£:> 

<EiE~> 

(E1E:£';) 

(E,E2E~) 

(E1E,EiEi) 

(E;E;E;) 

(E,E2 E3E1> 

N + 1 
4x 

4a; 

2N' + SN + S 

16x2 

2N+ 1 

16x' 

N 2 + N + 1 

16x2 

N-I 
----

160(2 

3 
16a;2 

SN" + 22N' + S2N + 41 

640(" 

2N3 + 4N' + 8N + I 

64x3 

SN'+7N+9 

64x' 

5N' + 3N + 1 
640(3 

2N' - 3N + 1 

64x3 

2N' - N + 5 
640(3 

N2 - 3N + 5 

64x3 

N3 + 2N - 3 

64x3 

3(2N-I) 

640(3 

(E,E2 E3E4E;) 
3(N - 3) 

640(3 

(E,E2EaE,E,E.) 
IS 

- 640(3 

Unitary (x = ,') 

N 

2x 

2x 

2N' + I 

4x' 

2N-1 
-~ 

N2 - N + 1 

4a;' 

N-2 
---40(2 

3 
40(2 

SN'(N + 2) 

80(3 

2N' - 3N' + 6N - 4 
80(3 

S(N' - N - I) 

8x3 

5N2 - 7N + 3 
80(3 

2N2 - 7N + 6 
S0(3 

2N' - 6N + 7 
S0(3 

N2 - 5N + 9 
S0(3 

N3 - 3N' + SN - 6 
Sa;3 

3(2N - 3) 

80(3 

3(N - 4) 

Sxa 

IS 
- 80(3 

• Supported in part by an N.R.C. grant. 
, See, for example. Statistical Theories of' Spectra: Fluctuations. 

C. E. Porter. Ed. (Academic. New York. 1965). Many of the per
tinent papers (including Refs. 2-7 below) are contained in this collec
tion. as well as an excellent introductory review of this subject. See 
also M. L. Mehta. Random Matrices and the Statistical Theory of 
Energy Levels (Academic. New York. 1967). 

2 C. E. Porter and R. G. Thomas. Phys. Rev. 104,483 (1956). 
aN. Ullah, J. Math. Phys. 4, 1279 (1963). 
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• F. J. Dyson. J. Math. Phys. 3. 140 (1962). 
• N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960). 

Finally, if N --->-- + 00 it can be seen from Table VII 
that 

(E~"E~2 ... E~G) "-' (E~' ... E~G)Ol'lh(1 + \::),,/2, 

n = 2, 4, 6, (47) 

where (E{" ... E~6)O]'th is the average obtained using 
the orthogonal ensemble with N ---+ + 00, and 

€ == oc/y. (48) 

One is tempted to conjecture at this point that (47) is 
true for all positive values of n.24 If this is true, it 
would appear that the relative size of rx. and y affects 
the eigenvalue moments only with respect to scale. 
Further, since € = 0 and € = I correspond to the 
orthogonal and unitary ensembles, respectively, it 
would then follow that 

for large N. 

6. SUMMARY AND DISCUSSION 

In this article we have shown that the evaluation of 
averages of the form (E~' ... E~::), where the ni are 
nonnegative integers, can always be reduced to 
evaluation of averages involving products of matrix 
elements. Thus, such averages can be evaluated with
out finding the joint eigenvalue distribution explicitly. 

There are at least two possible applications where 
knowledge of these averages could be extremely useful. 
First, if an approximate expression for any n-Ievel 
correlation function is found for some matrix element 
distribution, these averages could be used to check the 
validity of the approximation.25 

A second possible application may be in the calcula
tion of the moments of the distribution of widths. 

To date there has been little success in obtaining the 
distribution of widths or even its moments for the 
ensemble given by (40). Of particular interest are 
the moments in the limiting case rJ.. « y and N - .. 
+ 00. It seems to us that the eigenvalue moments 
may be crucial in obtaining these moments for the 
distribution of widths. 

7 N. Rosenzweig, J. E. Monahan. and M. L. Mehta, Nucl. Phys. 
A 109, 437 (1968). 

8 M. L. Mehta and N. Rosenzweig, Nucl. Phys. AI09, 449 (1968). 
9 M. L. Mehta, Nuovo Cimento 65B, 107 (1970). 

'0 L. D. Favro and J. F. McDonald. Phys. Rev. Letters 19, 1254 
(1967). 

11 L. D. Favro and J. F. McDonald. J. Math. Phys. 9,1429 (1968). 
12 J. F. McDonald, J. Math. Phys. 10, 1191 (1969). 
13 J. F. McDonald and L. D. Favro, J. Math. Phys. 11, 3103 

(1970). 
14 The results in Ref. 8 are an exception. However. the case 

considered there seems to have little physical interest. 
" F. J. Dyson, J. Math. Phys. 3,1199 (1962). 
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,. As previously noted, a permutation of indices on the eigenvalues 
does not change the average of a quantity. Thus, by a distinct term 
we mean one that cannot be obtained from another by a simple 
permutation of the indices. For example, if 111 = 2. 

Il=l 

However, since these terms are 1dentical, the second is not distinct 

and thus not to be included in }:;/). 
cr:=l 

" Of course. for a particular set of ". the averages required 
include only those for which each .1, is a sum of the lIa. each II, 
occurring once and only once. For example, to evaluate (E,E~E~), 
onc needs only (E~ED, (EyEl), (E,ED, and (E~). 

,. One might still question the second statement if one or more 
of the II, arc zero. However, (29) is still valid in this case provided 
that E? == I and Tr HO == N. 

'9 These can also be established by noting that coefficients, in fact. 
can be found by a counting procedure to be discussed below. 

"0 By definition two terms are of the same type if one can be 
obtained from the other by a permutation of the n,. 

2' Another approach (basically equivalent to the one given above) 
which could be used is 10 express the (Tr H·', ... Tr H-'a) occurring 
in (29) in terms of averages of eigenvalues. This will give a system of 
simultaneous equations for the momen ts of the eigenvalues. Then 
<E~' ... E;'), 01: = I, ... , 111. for arbitrary II, could be determined 
by solving these equations. 

" It should be noted that for this particular ensemble various 
useful identities can be found. For example. 

(Q(E)Tr H') = -(:01: + :,)(Q(E» 

+ (N(N + I) + N(N - I»)(Q(E» 
47: 4;' 

and 
\" \ 

N(Q(E» + ~ 1\ Tr H iJ Q
a 
(E)I = 201:«Tr H)"Q(E». 

1~1 E, 

23 Some of the results given in Table VIII were previously ob
tained via other methods. See M. L. Mehta, Nucl. Phys. 18, 395 
(1960); N. Ullah and C. E. Porter. Phys. Letters 6, 301 (1963); and 
N. Ullah, Nucl. Phys. 58, 65 (1964). In the last article Ullah con
jectured that for the Gaussian orthogonal ensemble 

(E,E2 ' •• E2",) = (-I )"'(2111 - I)! !/(401:)"'. 

The results in Tables IV-VI suggest that this conjecture could be 
generalized to 

(E,E.··· E.,,,) = (-1)"'(2111- I)!!{(/y[')}"', 

for any ensemble. 
21 It can be shown that if (47) is valid for (E;') ... E,:;'"), then it 

is also true for (£{'1' .. E:':mE'~+l)' 
2.; The results given in Refs. 7 and 9 above are not suitable for 

such a check. 
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Integral Representation Technique for Expansion of Arbitrary 
Analytic Functions of the Distance between Two Points 

A. K. RAFlQULLAH 

Departlllent 0/ Physics, Vniz'ersity 0/ Dacca, Dacca, Paki.l·tall 

(Received II September 1970) 

The coefficients of expansion of an arbitrary analytic function of the distance r between two points 
(r" 111, .pI) and (r2, 82 , .p2) in terms of the Legendre polynomials P, (cos 0,2) are double Bessel trans
formed. Assuming that the transformed coefficients are diagonal, consistent with the differential equa
tions satisfied by the original coefficients, we derive the explicit expressions for the latter coefficients. 
These formulas are identical to those derived by Sack from the solutions of the differential equations in 
terms of the hypergeometric functions. 

1. INTRODUCTION nomials as in (I), 

1''' = ~ R"lr!, 1'2)P1(cos 012), 
1 

(4) 
The expansion of the inverse distance r-1 between 

two points 1 and 2, with spherical coordinates 
(rl' °1,4>1) and (r2' O2, 4>2) in terms of the Legendre 
polynomials P1(cos 012), is given by the Laplace 
expansion 

where the radial function Rill satisfies the differential 
equation 

(1) 

where 
(2) 

cos 012 = cos 01 cos O2 + sin 01 sin O2 cos (4)1 - 4>2)' 

(3) 

More frequently, we encounter arbitrary powers of r 
and require expansions in terms of Legendre poly-

(5) 

The expansion (4) for n = 1 has been given explicitly 
by Jen. 1 The cases for n = -I and -2 have been 
treated by Fontana2 by group-theoretical methods. 
The formulas for the general case have been derived 
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by Sack3 from the solutions of (5) in terms of hyper
geometric functions satisfying continuity and dimen
sionality conditions. The transformation theory of 
hypergeometric functions have been extensively 
applied by him to express Rnt in various forms, some 
of which resulted in forms symmetric in r < and r> . 
By generalizing (4) to arbitrary analytic function of r, 
namely, 

fer) = 2: fl(r <, r»Pz{cos (12)' (6) 
1 

Sack was also able to give three analogous formulas 
for ft involving spherical Bessel functions of (r <%r» 
of related operators acting on fer»~, f(r1 + r2), or 
f[(ri + r~)!). 

Since the simplicity and elegance of integral trans
forms (and representations) sometimes causes this 
technique to be adopted, rather than trying to solve 
the corresponding untidy differential equations, it is 
the purpose of the present paper to derive explicitly the 
formulas for the coefficients!t in the expansion (6) with 
the aid of such a technique. It is in this respect that our 
approach differs from that of Sack. In Sec. 2 we give 
the formalism. The formulas thus obtained are 
identical to those given by Sack.3 Finally, we quote 
the results of application of the formulas to some 
functions of physical interest. 

2. FORMALISM 

The coefficients f t(r < , r » in (6) are double Bessel 
transformed: 

flr <, r» = LXl k; dk> L\~ dkdl(k<r <) 

X F1(k<, k»it(k>r», (7) 

where F1(k< ,k» is the transform of ft(r < , r» and 
is given by the inversion formula 

F1(k<, k» = Loo r; dr> Loo r~ dr dl(k<r <) 

X ft(r <, r»it(k>r». (8) 

Expression (7) must satisfy the radial equation (5). 
In order that Fz(k<, k» be simpler to work with 
rather than!t(r <, r», it must have a diagonal form, 
that is, it must be proportional to the delta function 
~(k> - k<). In fact, we see that if we choose the 
diagonal form 

Flk< , k» = (21 + 1)F(k»k;2~(k> - k<), (9) 

then 

flr <, r» = (21 + 1)100 

k2 dkUkr <)F(k)jz{kr», 

(10) 

where we have set k> = k, satisfies (5). The factor 
(21 + I) has been incorporated so that application 
of (10) to a function whose expansion is known, say 
Laplace expansion (I), gives the desired expansion. 

By letting r < = 0, it follows immediately from (6) 
and (10) that F(k) is the Bessel transform of 

fer»~ = Loo k2 dkjo(kr»F(k). (J 1) 

Equation (10) is our working formula. In order to 
evaluate the integral, we expand jl(kr <) in power 
series, so that 

00 (_ )Sr~+l 

ft(r < , r» = (21 + t) ~ (2 )" (2 21 1)" 
"-0 s.. s + + .. 

X LooF(k)it(kr»k2S+I+2dk. (12) 

Since 

and 

(-rY(r-1 :JUkr) = ktit(kr), (14) 

we find, with the help of (II), 

(-r»!(r;1 0~Jr;I(0~J2'r>f(r» 

= (->"LY"F(k)j,(kr»k2S+I+2dk. (15) 

Substitution of (15) into the right side of (12) yields 

00 ( )t 2. 
I'(r r) - (21 + 1) ~ -r<r> r< 

./I <, > - .-:0 (2s)!! (2s + 21 + 1)!! 

X (r;1 0~JTr;I(0~J28r>f(r»l 
(16a) 

or operational expansion yields 

ft(r < , r» = (21 + t)( -r <rS("~/%r>Y 

X (r-l ;I(r <%r» [r fer »)), (16b) 
> (r <ojor>Y > > 

where it is the modified Bessel function 

00 ZI+28 

il(z) = ! . (17) 
8=0 (2s)!! (2s + 21 + 1)!! 

Writing (10) in the form 

ft(r1 , r2) = (21 + 1) 1°OUkrl)F(k)jl(kr2)k2 dk (18) 

and in the integrand using the following formula, 
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i l(kr})jikr2) 

= :! 2'(1 + 1}, (kr1r2)l+jl •• (kr+), (/9) 
.=0 (21 + 1)!! (21 + 2),s! r., 

where 

(a)o = I, (a), = a(a + I)· . , (a + s - I) 

= f(a + s){r(a), (20) 
we obtain 

ex; 28(1 + 1) (r r )1" , 
ft(,,}, 1'2) = (21 + I)s~o (2l + 1)!'(21 ~ 2).s' :+2 

x L<XlF(k)jl+s(kr+W+'+2dk. (21) 

Since it follows from (11) that 

/(1'+) = l<XO F(k)jo(kr+)k2 dk, (22) 

we can evaluate the integral in (21) with the help of 
(22). Thus 

f - 1 (-r1r2 ~)' 
1- (21 - 1)!! 1'+ arc 

x i (I + 1). (-2r1r2 ~)'f(r+) 
0=0 (21 + 2)ss! r+ arc 

1 (-r1r2 a )1 
= (21- I)!! -;:- arc 

( 
-21' r a) x ~ 1 + 1; 21 + 2; __ 1_2 -a fer c), 

r+ r+ 
(23) 

where <I> is the confluent hypergeometric function 
and where the product r1r2 is to be treated as constant 
in the differentiation. Now, using 

i (z) = 1 zle-z<I>(1 + l' 21 + 2' 2z) (24) 
I (21 + 1)!! " 

and, for Re a > 0, Re (b - a) > 0, 

<I>(a; b; z) = eZ<I>(b - a; b; -z), 

we can write (23) as 

( ) I ) ' (-rlr2 a ) fl r},r2 =(2 + 1/1 ----

1'+ or+ 

(25) 

x exp (-r1r2 ~)f(r+). (26) 
r+ ar+ 

Finally, using the Taylor expansion 

(27) 

and 

(Z-I.E..) _ 2_0 
oz - 0(Z2) , 

(28) 

introducing the variable p = (ri + r~)l, and noting 
that the product r1r2 is to be treated as constant in the 
differentiation, we can write (26) operationally as 

. (-r1r2 a) 2 i-Nr1' 1'2) = (21 + 1)// -- -. 1[(1'+ - 2r1r 2) ] 

r+ 01'+ 

= (21 + l)i l (-r1r2 ~)f(P)' (29) 
p ap 

Formulas (16), (23), and (29) are identical to those 
derived by Sack3 on the basis of solving the differential 
equation satisfied by the radial functionh in terms of 
hypergeometric functions. 

We give below the results of the application of the 
above formulas to some functions of physical interest. 

(i) Let fer) = wo(kr) , where r = Ir} - r21 and 1\'0 

is a Bessel function, 

wo(kr) = Ukr), no(kr), h~l), h~2)(kl'), (30) 

Application of (16) gives 

(ii) If fer) is a modified Bessel function io(kr) or 
ko(kr), then 

io(kr) = L (21 + 1)(- )Ii,(kr <)iz{kr»P,(cos 012), , 
(32a) 

ko(kr) = L (21 + l)i,(kr <)kl(kr>}Pz{cos 612), (32b) 
I 

(iii) If fer) = r ar Jr, then 

(33) 

(iv) If fer) = eikrjr, then, by setting a = -ik in 
(33), we find 

ikr 

~ = ik! (21 + l)j,(kr <)h~ll(kr»Plcos 612), (34) 
r I 

(v) If f(r) = exp (-ar2), then application of (29) 
yields 

exp (-ar2
) = I (21 + 1)i1(2ar1r2) 

1 
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(vi) Cancelling the common factor exp [- (ri + ri)aj 
from both sides of (35), we find 

exp (201"j1"2 cos ()j2) 

= 2: (21 + 1)i/(2arjr2)Plcos ()12)' (36) 
I 

(vii) If in (36) we set 2ar1 = ik, r~ = r, and 812 = 0, 
we obtain 

exp (ik,. cos 8) = 2: ;!(21 + l)j!(kr)Plcos 0). (37) 
! 

JOURNAL OF MATHEMATICAL PHYSICS 

Application of (16) to fer) = r-l, of course, yields 
(I). Formulas (31), (32), (35), and (36) have also been 
quoted by Sack. 3 
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sense of representation theory) is examined. The Bloch-Floquet theorem is generalized to almost periodic 
functions and some properties of the density of states and spatial localization of the electrons are obtained. 
Some qualitative aspects of band structure are discussed. 

INTRODUCTION 

The purpose of this paper is to propose a new 
approach to the problem of disordered systems, and 
to give some general features which can be drawn 
from it. 

As usual, we assume that the states of the electrons 
can be described by the eigensolutions of a Schro
dinger equation for a potential V. Essentially, this 
means that we restrict our discussion to systems for 
which the adiabatic approximation is valid. 

To construct the potential V, we consider the array 
of ions, in which the electrons move, as a kind of 
oblique projection of three n-dimensional periodic 
lattices on three independent directions of the usual 
Euclidean space. 

This picture is justified by the fact that a bounded 
potential is closely approximated by a series of uni
modular exponentials-that is, by a kind of "gener
alized Fourier series" with several basic frequencies. 
As shown in the Appendix, this series, which we shall 
ultimately identify with V, can be obtained essentially 
by projection from a function W of 3n variables, 
periodic in each variable. W can therefore be looked 
at as a function generating a 3n-dimensional lattice. 

From a mathematical point of view, V is nothing 
more than an almost periodic function (APF) (in the 

sense the term is used in representation theory). A 
brief discussion about this wide class of functions is 
given in the first section. (The reader who requires 
more information on APF's is referred to Refs. 1-3.) 

The second section is devoted to a generalization of 
Bloch's theorem for a periodic potential. The main 
idea here is to use the translational symmetry of the 
3n-dimensional lattice mentioned above and to 
"project" the result in three dimensions. 

In Sec. 3 we use these results to discuss some 
features of the energy bands of the system under 
consideration. We show that disorder leads to the 
existence of a very large number of small gaps in the 
energy. We also notice that the concept of a Brillouin 
zone becomes meaningless and leads us to work in 
"the extended zone scheme." 

The properties of the density of states and the Van 
Hove singularities are considered in Sees. 4 and 5. We 
show that, in certain cases near the edges of a band, 
the density of states may be characterized by a small 
tailing, but that Van Hove singularities give very 
sharp edges for the same point. (The existence of a 
tailing was already found in some other papers for 
slightly different situations. See for example Refs. 4 
and 5 and references therein.) Finally, in Sec. 6, we use 
the Green function of a differential equation of 3n 
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variables to obtain some results on the spatiallocaliza
tion of electrons in disordered systems. 

I. SOME PROPERTIES OF ALMOST PERIODIC 
FUNCTIONS 

In this section we give (in general without proof) 
some important properties of APF on the group R3 
(the group associated with the addition of vectors in 
the usual three-dimensional space), R is the real line. 
Since these properties are shared with all Abelian 
locally compact groups, we outline the general case in 
the Appendix. 

Definition 1: A continuous bounded function f 
belonging to R3 is almost periodic if, for every E > 0, 
there exists T> ° (T E R). such that every sphere 
(ball) of diameter T contains the extremity of a vector 
-r satisfying 

II! - ! ... II", :::;; E, 

where f ... is defined by f ... (x) = f(x + -r) and 

II!II", = sup 1!(x)l· 
xER

3 

We show in the Appendix that such a function can 
be expressed as a "generalized Fourier series." More 
precisely, there exists a discrete subset Af of R3 such 
that the series 

converges uniformly towards f 
It is of interest to notice here that 

II! - fn ... 11 ~ nE, 

where n is an integer, which shows that APF's are 
certainly good candidates for the description of order 
at short distance. 

It is clear, on the other hand, that the set of APF's 
is very large and is sufficient to approximate any 
physical bounded potential. In fact, the possibility of 
representing any APF as a "generalized Fourier 
series" shows immediately that the sums and the 
products of an enumerable set of periodic functions 
are also APF. 

An example of such a function is given by the Bloch 
type solution 

'Yk(X) = eik'Xuk(X), 

where Uk is a periodic function. We have, in fact, for a 
given E 

!'Yk(X + -r) - 'Yk(X) I = IUk(x + -r)eik 
.... - uk(x)l· 

We now choose a -r belonging to the set of periods of 

Uk; then 

l'Fk(x + -r) - 'Fix) I :::;; sup IUk(x)lleik .... - 1\. 
XER

3 

Now -r can be chosen in such a way that leik 
... - 11 is 

arbitrarily small. We take -r such that 

sup luk(x)lleik 
.... - 11 < E. 

xE!l3 

Definition 2: Let F be a function of R3 x R3 . .. X 

R3 (i.e., F is a function of several variables). We call 
diagonal of F (notation diag F) the function f(x) 
defined by 

f(x) == diag F(x) = F(x, x, ... , x). 

It is possible to show (see Ref. I, p. 35) that the 
definition may be extended to an application F of a 
direct product of an infinite number of space R3 into C 
(the complex numbers). 

Proposition 1: For any APF f on R3 there exists a 
function F, of the type defined above, periodic in each 
variable, and such that 

f= diagF. 

For the proof, see Appendix. 

This last proposition will be the most important 
result required for the establishment of the theorem 
giving the general form of an eigensolution of the 
SchrOdinger equation for a potential given by an 
APF. 

II. THE BLOCH THEOREM FOR APF's 

Let Vex) be an APF. We wish to show that the 
eigensolutions of the operator - \72 + V on Je, the 
pre-Hilbert space generated by APF, are similar to 
those given by Bloch for a periodic potential. (A 
pre-Hilbert space is a space the closure of which is a 
Hilbert space.) 

We first prove the following. 

Theorem 1: Let Vex) be an APF and Wa function 
satisfying the conditions of Proposition I, i.e., a 
periodic function such that diag W = V. Then there 
exists a linear differentiable operator D such that all the 
eigensolutions rP of - D + W, for which diag rP y6 0, 
satisfy 

(- \72 + VeX) - E) diag rP = 0, 

with rP belonging to the pre-Hilbert space Je' generated 
by APF's on R3n. 

Moreover, if tp is an eigensolution of - \72 + Vand 
tp E Je, there exists a function rP (eigensolution of 
-D + W), such that diag rP = tp. 
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Proof" Let c/> E Je/. As such (see Appendix) c/> can be 
expressed as a Fourier integral: 

c/>(x l ' .. xn) 

= lim .!. f A(k
l

, ... , kn)ei[klXl+k2XS+,,·+kftXft]d3nli. 
'· .... 00 V Jr-

Now put 
n 

D = IV.Vt, 
•. /=1 

where 
3 0 

V. = .I;iei , 
.=lUX. 

e i independent of s, and such that (ei , ei ) = d;,;. 
Therefore 

We assume that c/> is such that this last expression is 
well defined. 

Let k = 2:=1 k., (k E R3); then, 

diag ([ - D + W]c/» 

= lim -VI r (k2 + V)A(k1 , ••• , kn)eik"d3nk. 
v .... 00 Jv 

Let us now perform the following change of variables: 

2 k i -+ k, k; -+ k;, .i ¢ 1. 
i 

Then 

diag [( -D + W)c/>](x) 

where 

= lim ~ r [k2 + V]B(k)eikxd3k, 
v .... oo V Jv' 

(where V' and V" are respectively volumes of R3 and 
R3(n-1) such that V'V" = V). 

But 

hence by a trivial computation we get 

diag ([ -D + WJc/»(x) = (-V2 + V) diag c/>(x). 

Since the eigensolutions are such that 

(-D + W)c/> = Ec/>, 

c/> and (-D + W)c/> E Je/, our expression in terms of 
a Fourier integral is satisfied, thereby giving the first 
part of the theorem. 

Conversely, let "I' be a function of Je satisfying 

( - V2 + V - E}rp = O. 

We know that 1/
' 

can be written 

c/>(Xl ... xn) 

= lim VI, f a(kl + ... + k n)ei(k1"1+"·+k"""'d3nk. 
v .... 00 Jv 

We then have 

(-D + W - E)c/>(x1 ' .• Xi) 

= lim ~ f (k2 + W - E)a(k) 
v .... oo V Jv 

x ei(k"1+k'("I-Xl)+"+kn("n-"1»d3nk, 

where, as previously, k = 2 ki . 

We make the change of variables 

k = Iki , kj-+k;, j ¢ 1, 
i 

n 

X IT d(x; - Xl) 
;=i 

= (21T)3(n-l) lim ~ f (-V2 + V - E)a(k)eikx1d3k 
v' .... oo V Jv' 

n 

X IT t5(x; - Xl) 
;=2 

= (21T)3(n-1l( - V2 + V - E)tp(Xl) IT t5(x; - Xl) = O. 
1=2 

Corollary J: All the eigensolutions of - V2 + V are 
of the form 

tp(X) = eik" diag Uk(X), 

where eik
" is some unitary character of R3 and Uk is a 

periodic function having the same set of periods as 
W (or V). 

Proof" If we apply Born-von Karman boundary 
conditions on the solutions c/> of -D + W, c/> is of the 
Bloch type (in 3n dimensions) and the result is 
obvious. 

Corollary 2: When W has independent periods (for 
each of the variables) - D + Wand - V2 + V have 
the same set of eigenvalues. 

[By independent periods we mean that if 
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then E 

n 

It}q; = 0, i = 1,2,3, FIG. 1. Schematic bands struc-

\ .J ;=1 ture of disorder systems. 

where t; are rational numbers, implies that t1 = 0 for 
all i andj.] 

Proof' In view of the theorem we have only to show 
that diag u ~ O. But 

u = ~ Bq1oo.q" exp (' i ~ q;x;). 
qj , 

This implies that 

diag u = f Bql"ooq" exp (i t q;X1)' 

We now have to show that if 

exp (i t q;x1) = exp (i t q~X1) 
for any Xl' this implies that qj = (qi)', V i and j. 

But our relation implies that 

! (q~ - (q~)') = O. 
; 

On the other hand (q;)' = t;q~, t; rational; that is, 
Ii (tf - l)q; = 0 and, with our definition, this shows 
that t; = 1 for all i and j. 

Knowing the form of the solution, it would be of 
interest to see what remains of the band structure of 
such a system. 

III. BAND STRUCTURE 

We have seen that the general form of the solutions 
of 

(-D + W)e/> = Ee/> 
are 

e/> = exp (i t k;X;)Uk1oO'k,,(X l ••• xn), 

where k; and x; E R3. 
Introducing this solution in the equation, we get 

{(tkif - i tk;V; - D + W - E}Uk1.oOk" = O. 
It is clear that this operator is, by well-known 

arguments, Hermitian on the 3n-dimensional unit 
ceJl. 

The condition of continuity on the boundaries of 
the cell for the function U and its first derivatives gives 
a discrete set of eigenvalues En' for each value of 
k = I;k,. 

En as a function of k is the analog of the energy 
band in the Bloch case. We have, however, here 
many important differences. 

\ ./ 
'- / 
'- ./ 

------~~-------~k 

First of all,k is now defined on the 3n-dimensional 
Brillouin zone constructed on the reciprocal lattice 
associated with W. Since the choice of W is not unique, 
this shows only that we have to work here in the 
extended zone scheme. 

Secondly, as we will show below, En(k) is a function 
compounded of a succession of discontinuous small 
pieces, i.e., En(k) has a very great number of gaps 
(see Fig. I). (This number becomes infinite for every 
finite region when the periods of Ware independent.) 

Finally the density of states exhibit some important 
differences as we show in the next section. 

To prove our second statement let 

k i - 2 ifNi i , - 7Tp; ;ai, 

where N; and p~ are integers, and N;a: define the Born
von Karman condition in the 3n-dimensional space (a~ 
basic vector of the unit cell) and also define k; = 
27Tf N;a; (the smallest of the K;). 

We assume now that we have the following con
ditions: 

for all k, j, where n;k and n~; are integers. 
These conditions express some commensurability 

relations between the different directions of the 3n
dimensional lattice generated by W. In fact we have 
that 

Let k; = p;ki, such that ki is as large as possible and 
let q~ = 21T/a~ (reciprocal lattice vector). 

We now have the following lemma. 

Lemma 1: If N;p~ = N; are relatively prime numbers 
for all the values of i and j, there exists integers s~ 
such that 

~ s;q; = J(i. 
; 

Proof" ~; s~q~ = ~; s~N~p!ki = ~; s~N}ki, and by 
the Bezout identity (Ref. 6) we can choose the s~ in 
such a way that ~; s~N~ = I. 

Note that if the N~ are not relatively prime, they 
have a highest common factor, say d i 

, and the relation 
implies that 
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But since the N; are very large numbers, we may 
assume that d i is in general very small (except for very 
peculiar choices of the NJ which in general have no 
physical meaning). 

As usual for a Bloch system, E = E(kl + ... + k,,) 
is periodic with every reciprocal lattice vector q. 
We now see that if we take q as a vector of component 
s;q;, E is periodic within the periods k i = 2:j s;q~, 
i = 1,2,3, that is, with very small periods. 

Note that when the periods are independent q can 
be chosen arbitrarily near of any given quantity; that 
is to say that E is a constant. On the other hand E may 
be discontinuous for every value of the k; equal to a 
reciprocal lattice vector. Since E cannot be a constant 
or nearly a constant, this implies that E is a dis
continuous function. 

Resume 

In summary we can say that, if the potential of a 
system is given by an almost periodic function, the 
band picture must be considered in the extended zone 
scheme. The energy as a function of k is then char
acterized by a great number of gaps. This number of 
gaps is greater if the different periods are nearly 
independent and becomes infinite in the limit of 
independent periods. 

This shows that, if the variation of the energy with 
k is of the order of that of the pure crystal (i.e., finite 
inside of a band), the majority of the gaps must be 
small but do not allow us to predict the way the bands 
of the pure crystal are transformed when the system 
becomes disordered. 

IV. DENSITY OF STATES 

In computing the density of states, we assume the 
existence of a stronger relation on the commensura
bility conditions than that used in the last section. We 
require that there exists integers n; such that 

.- i ik"'" i ik-i njkj = n" k = nl l = .... 
The n; are two by two relatively prime. More precisely 
we ask that in the relations of commensurability of the 
last section the numbers n}k be independent of k. 

These conditions mean that we have now a hyper
cube.Q the sides of which have length n~k~, and such 
that 

k i = .2: k;, i = 1,2, 3, 

give different values for all the set of k; inside of n. 
This implies that for all different eigensolutions of 
- D + W the diagonalization also gives different 
solutions of - \72 + V. 

If we describe n in terms of the three-dimensional 
vector of components ki, in the corresponding 

volume r, we see that the three-dimensional k-space 
is divided in volumes having the size of r, and having 
the same density of k points. 

Finally, as we have seen in the last section, any k; 
can be described as a linear combination of com
ponents of reciprocal lattice vectors and we may, for 
the computation of the density of states, describe the 
energy in a band picture reduced to r. 

Taking into account all these different points, we 
may write the density of state geE) in the form 

1 0 IE gee) = -- 2: - d3nk 
(27T)3nbranchcs oE 0 

inside r 

and since E = E(kl + ... + k n) we write 

1 0 IE geE) = -- .2: - d3k 
(27T)3n branches oE 0 

inside r 

Let 

Hi(Xi) = If ei(ki-nC/Jsidnk = 2eiki",i Cin x:oxir, 

where ko is the side of the hypercube. Then 

= 4(k )n-l n7T 
o 2n 

(
ki )n-lj x 2: (-lY-+n-2r r!(n-r)!, 

O<r<[(k'!koJ+n]!2 ko 

for 0 < ki/ko < n. 

The general expression for geE) is rather cumbersome. 
However, for n large enough we can use the following 
relation: 

(
sin y)n n 2 ny2 
-;- rov 1 - (; Y + ... rov exp - 6 . 

Now 

['Xl (ki) (nl2) Jo cos ko l exp - (; dl 

(6)! ((ki)2 3) 
= i7T

t ~ exp - ko 2n ' 
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and geE) becomes 

(ko)3In-ll t 
geE) = t 87T 

(27T)3nn 

If we assume that E may be approached by a contin
uous derivable function, and put rx = 3/2k~n, we get 

a IE , g(E),....., I - d3ke-ak
-

branches a E 0 

In the case where the periods are independent, we 
define 

N(E) = g(E)/(ko)3 11
, 

so in this case, since ko -->- 00, we get 

N(E) oc 1.-- C d3k. 
oE ~o 

This last expression is obtained by noting that 

lim (Sin koX)n = 7Tn[b(x)r. 
ko- 00 X 

We see that we get essentially the usual density of 
states but multiplied by a factor which goes to 
infinity with ko• 

Example: We wish to treat the case of a critical 
point near the edges of a band and we assume that E 
has a critical point Ee for k = ke and is such that 
geE) = 0 for E < Ee. Around Ee we write 

E = Ee + ak2 and k = ke + k'. 

With this we have 

geE) ,.....,J k' dOe-aalkc+k·)', 
E 

or, if k' is small, 

(ke + k')2 ~ k~ + 2kek'. 

Since Ee has to be smaller than E, 

and 

(
E-E)! ! g(E),....., -a-

e 
exp { -rxkea[ke - 2(IE - Eella) n. 

Assume that rxak~ is sufficiently large-that is, 
that ke is already in the tail of the Gaussian. Then we 
obtain the form for geE) as shown in Fig. 2. 

FIG. 2. Density of states near 
one of the edges of a band. 

glE) 

-4~------~.E 

On the Existence of n (or r) 

Assume that Vex) = In heX - R n), where h is a 
pair potential. Write now Vex) in the following way: 

p 

Vex) = I I heX - Rn ), 
i=l nEAi 

where Ai is such that I"EA; hex - R,,) is a periodic 
function (when the sum is extended to infinity). It is 
clear that in this case W is given by 

" W(XI ... xn) = I I h(Xi - Rn)· 
i=l nEAt 

The commensurability conditions on W then imply 
commensurability conditions for Vi; in other words, 
they imply the existence of points where the different 
lattices corresponding to the periodic functions defined 
above coincide. Since physically several atoms cannot 
occupy the same site, this description will only be used 
for a finite sample. On the other hand, since the atoms 
cannot be too near each other, we see that the coin
cidence can happen only after several times the length 
of the sample has been spanned. 

In mathematical terms this means that if L is the 
side of the sample (considered as cubic) and if 

L = N;aj, i = 1,2,3, j = 1 ... n, 

then for the commensurability conditions, we require 
that 

n~kN~a~ = n~;Nja;, 
where n~k and n~j are integers large enough to ensure 
a reasonable spacing of the atoms inside the sample. 
These are precisely the conditions of commensurability 
given in Sec. 3; conditions which ensure for us the 
existence of ko-that is, of the hypercube O. 

Case of Ordered Alloys 

Let us consider the case of an alloy such that if all 
the atoms are considered as identical we have a cubic 
lattice of side Q. 

In such case the basic vectors of our 3n-dimensional 
lattice may be considered as being given by a~ = p~a, 
where the pj are integers. (This choice of the lattice is 
certainly not unique, but it is obviously a possible 
one.) 

On the other hand, the generalized Born-von 
Karman boundary conditions are such that 

N;p;a = N;a; ~ Na = L, 
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where L is the length of the sample (considered to be a 
cube). It follows that ko, the side of one hypercube, is 
given by 

that is, of the order of a fraction of a reciprocal 
lattice vector. 

If we assume that the number of periods is small 
compared with N, IX-I = 2k~n/3 will be smaller than 
or of the order of the smallest reciprocal lattice 
vector q = (2rr/a). 

This shows that IX-I is, for the nearly free electron 
case, a/the arder a/magnitude a/the band width a/the 
pure crystal. Further, if the band picture is not too 
seriously impaired in such a disordered system, we 
may expect a tail in the density of states for some 
critical value kc "" 0 corresponding to the edges of a 
band as shown in the previous example. The results 
for the density of states depend on the values of IX 

and ke, and on the approximation made in the 
calculation: first the commensurability conditions 
defined on a hypercube and secondly the approxima
tion of a product of sin kx/x by a Gaussian. These 
different points do not allow us to consider our result 
as more than an attempt to understand the behavior 
of the density of states. 

It is clearly of interest to pursue this approach 
further in order to elicit more information on the 
behavior of g(E) near critical points. We consider 
this next. 

V. THE CRITICAL POINTS OF THE DENSITY 
OF STATES 

As in the last section, we assume that E can be 
described, to within a reasonable approximation, by a 
continuous differentiable function of the neighborhood 
of the critical points. We examine the density of 
states in the 3n-dimensional space and so avoid 
dealing with any special measure in the integration. 

Around a singularity, E can be expanded in Taylor 
series; we get 

E = E 1 "" ( o2E ) ok; ok:i kik:i ... 
c + ~. ~ ~ki~k:i ~ki ~k:i k I + , 

I.'.K,l U Q U k U 1 

where, as previously, ki = II k~, i = 1,2, 3. 
By a change of coordinates E can then be written 

E = Ee + a (ie~ - i e~). 
;=0 ;=,,+1 

To obtain this last result we have used the fact that 
Oki/ok~ = 1 for alII, we have diagonalized the matrix 
(o2E/ok i okl)E and have made a homothetic trans
formation. cThis transformation is used in the 

computation of Van Hove singularities.) We examine 
the case with a > 0. 

First, let us perform the following change of 
variables: 

~1 = ri sin 01 sin O2 ••• sin 0"_1' 
~2 = ri sin 01 sin O2 ••• cos 0"_1' 

~" = r1 cos °1 , 

~"+l = r2 sin 0" ... sin 03n-2, 

e3n = r2 cos 0". 
Then 

D(rl' r2, 01 ••• 03n-2) 
= (r )"-I(r )3n-1I-l sin 0,,-2 . .. sin ° 1 2 1 )-2 

X sin 0!n-1I-2 ... sin 03n-3 . 

Put r1 = r cosh rP, r2 = r sinh rP, rP ~ 0, from which 
we find 

D(rl' r2, °1 ", 03n-2)/D('lrP0l ... 03n-2) = " 
and after integration on the angles 01 ••• 03n-2 

i ds i cosh ,/,.3n-"-1 sinh ,/,.11-1 __ oc /n-l 't' 't' drP. 
E IVEI ~~O (cosh2 rP + sinh2 rP)t 

If P = 3n, 
r ds JE IVEI OC ,3n-l 

or 

g(E) oc (I E ~ Ee Ifn

-

1l/2 
+ c, for E - Eela > 0, 

oc c, for E - Eela < O. 

The case p = ° is the same apart from a change of 
sign for a. This shows that near the edges the density 
of states must be very steep and that the effect deduced 
in the previous section may be difficult to observe. 

If p "" nand rP > 0, since r1 and r2 are smaller than 
a certain given quantity defined by the small region 
chosen around E, we have for r - 0 

rl/cosh rP = r2/sinh rP = 0; that is, rP - 00. 

But for rP large enough, cosh rP = sinh rP "-' ef>/2 and 

__ 't'~ ___ 't',--:- drP "-' --Or-2 dcp i cosh ,/,.3n-1>-1 sinh ,/,.,,-1 L (e·)3n-2 

~ (cosh2 cp + sinh2 cp)t ~ e.O)t 

such that 
( .)311-2 

'1' '2 EM = "/2(!)3n-2 ~2 + c 
n-
( I )3n-2 

"-' ..j2(!t"-2 '1 , + c. 
n-2 
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Therefore 

~ ex: Or-2 _r_ + c 
IVEI n - 2 

= (!)3n-2(IE - Ee/ani + c. 
n-2 

This shows that with increasing n the other singular
ities are washed out. 

VI. LOCALIZATION OF THE ELECTRONS 

In this section, we show that disordered systems, 
when described by almost periodic potentials, have 
electron states which are more localized than in the 
pure crystal. More precisely we show that, for sta
tionary states, the wavefunction is characterized by a 
certain number of important peaks where the prob
ability of presence of a localized electron is large. 

We start with the equation given in Sec. I: 

( - D + W - E)cf> = o. 
This is the equation we have in 3n-dimensional space, 
the solution of which being such that diag cf> = "P, 
where "P is an eigensolution of ( - V2 + V - E)"P = O. 

Now write this equation in the form 

(-D - E)cf> = - Wcf>, 

where Wcf> is considered as a known quantity. We 
proceed to solve the problem by Green's function 
techniques. Let G be defined by 

- DG(x, y) - EG(x, y) = b(x, y), 

where x, y E R3n. Put G(x, y) = if(k, y)eik." where k 
is a vector of components k~. The previous equation 
becomes 

L+cx>"'{:f [(t k;Y - £]f(k, y)eiklle~k(X-Y)}d3nk = 0, 

or, after multiplication by e-ikx and integration, 

(q2 _ E)f(k, y) = e ikJ, 

with 

qi = I k;, j = 1, 2, 3. 
; 

Forq2 - E '#= 0 (or E = £ + iT) we have 
e-ik(J-X) 

G(x, y) = -2-- d3nk. 
q -E 

Let us write Was a Fourier series: 

where the a,..i are chosen in a convenient manner such 
that ' 

Then 

W =.n II L a,./ei
,., .,i' 

and if we put 

8 " ( i .) 

i-I J=1 tal 

then W; is a periodic function. We now divide W; 
into a sum of functions 

W;(x;> = 2 V;(x; - RD· 
n/ 

(The R~ are the lattice sites.) 
The V~ are certainly not uniquely defined but it is 

clear that such a decomposition always exists. 
With this result we have for cf> the following expres

sion: 

cf>(y) =f· . ·f ei:(Y-X) 

q-- E 

X if II [~iV;(X; - R;)]cf>(X)d
3t1

kd
3n

x, 

or, writing x~ - R~ = z;, 

cf>(y) =f· . ·f-9 1_ 
q- - E 

X IT IT [2 .. eik/(lJl-zl-R/lV;(zD] 
i=l ;=1 Rl 

X cf>(Z + R)d3nkds"z. 

By the Corollary I of Sec. II we have 

and 

-I..{) f f 1 rr3 rrn [~ ·k i
( i ; R i) . .] 'f'\y = ... -2-- ~.e' , IIi -Zj - j Vj(zj) 

q - E i=1 ;=1 Ri' 

X eik'(z+R)Uk.(z)d3nkd3"z. 

Expressing Uk' (X) in a manner similar to W, we 
obtain 

cf>(y) =f·· ·f-2-1 
- n IT [Iei(k;';-k1i)Rj' 

q - E .=1 ;=1 RI 

However, 

X ei{(kioi-k/lz/+kllJjiIV;u ;(z;) ]d3nkd3nz. 

IeiU'/'-k/)R/ = N; 2 b(k;p; - k~i), 
R! pI 

where the p~ are reciprocal lattice vector components. 
So that writing 

and 
n 

q'i = 2(kji + p;), 
i=1 
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we get 

cp(y) = N IJ· .. J 1 
p q'2 _ E 

X ei{P/Zii+(k/'+P/)Y/}V~u~(z})d3nz. 

Let 

Then 

cp(y) = N I 12 1 IT IT a;(pDei~U(k/i+p/ly/, 
P q - E i~l j~l 

so that after diagonalization we get 

• A. '" 1 II3 IIn 
. . .Q' dIag 'f'(x) == 1p(x) = N £., 1 a~(p;)e' x. 

P q 2 _ E i~l j~l 

In principle we can now put cp in the equation 
(- D + W - E)cp = 0 and determine by a determin
antal equation both IIii a~ and the energy. Since in 
general this is very difficult to perform, we first assume 
some special form for the function u} V;, functions 
which can be regarded as rapidly decreasing outside 
the unit cell centered at the origin. 

(1) We assume that 

iii A.~ iii 
UjVlXj) = '2' -r.xj < Xj < r.x j , 

= 0 elsewhere, 

which is a kind of generalized muffin-tin potential: 
i.e., 

1 if,,·i . i i i( i) /L j , is .iz·i d i 1 i SIll S /1. j a·s· =- e" z·=/L·---
1 1 2. 1 1 i . 

-a./ Sj 

But 

IT IT ;.; sin s;r.x; "" II (;':r.x;) exp [-2, (S~r.xD2/6J 
i~l j~l s; ij Ue 

for n large enough. Then 

exp (-2, (P;r.x;)2/6) 
cp(y) = N 2, ij ei(k'-V)Y, 

P q'2 _ E 

where;' = II ;'~r.x}. 
i 

(2) Take 

u;V;(x;) = -.1; (X;)2 : (b;)2' b~ > O. 

Since 

we get 
IT a;(sJ) = Ae- ~Ii b/Is/I 
ij 

and 

(3) Take 

with p~ > O. 

We obtain 

II a;(sD = II - AJ[7Te-fJ / ls / 1 sin (r.xl Is;I)] 
ij ij 

and 
- ~ij (J ;'p/ i(k-p)y 

cp(y) = cs + 2, II sin (r.x~ Ipm exp e . e 
p ij q'2 _ E 

In the general case we note that since lIu} V} II < 00, the 
series of the la~(pDI must converge. Then II la}(pDI 
must converge very rapidly with increasing n. 

The main differences between the general expres
sions for the eigensolutions of - \7 2 + V for a periodic 
potential or for an almost periodic potential can now 
be investigated both in the examples and in the 
general case: 

(a) For the case n = 1 (periodic), 1p(x) == diag cp(x) 
is a Bloch type function, where the periodic part is 
expanded in Fourier series." 

For n > 1 1p is a "generalized Bloch" type solution 
where the almost periodic part is also developed in 
terms of a "generalized Fourier series." 

(b) As we have seen in Lemma 1 of Sec. III, if 
q; = 27T/a} (reciprocal lattice vector), then there exists 
an integer s} such that 2,8/ s;q; = 27T/N~aJ. This shows 
that q'i and consequently q'2 can approach any given 
quantity to within 27T/N}aJ-that is, physically 
arbitrarily near. But this is true only in the case n > 1. 

It follows also in this latter case that the p; can be 
chosen, for positive energy, in such a way that q'2 -
E "" O. 

We can now distinguish several cases. Let 0 be a 
small set of values of q' around the value q~ defined be 
q~2 = E. Then we may have the following. 

(1) a}(pD is of the same order of magnitude for the 
p; for which q' EO, and 1p(x) is dominated by 

I 12 1 exp [i ± (i(q - pDxi)J. 
p q - E i~l j~l 

q'E~ 

That is, we have a superposition of plane waves with 
similar amplitudes and small changes in phase. Then 
11p(x) I will be very much localized in space; more 
precisely /1p(x)/ will be characterized by a series of 
peaks. 

We may observe that, since II a;(pJ) converges 
rapidly, for high energy 0 will rapidly be reduced to a 
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few points or to a single pOint, leading to a single 
plane wave, as expected. So the effect of localization 
is more to be expected at lolt' energy. 

This situation is illustrated by examples (I) and (2), 
if we assume that respectively ocjp; and b~pj are of the 
same order at magnitude for j = I - n (p fixed). 

(2) If ITo a~(pD = 0 for the pj corresponding to 
elements of (y, or if E < 0, then the behavior is 
essentially defined by the function ITo a;(p~) in other 
regions. 

This will lead to smooth peaks by the cancellation 
of certain phases. But the localization will be much less 
concentrated than in the previous case. It is worth 
noticing, however, that if E > 0 this situation will 
not happen very often. In fact, if u~ V; is an even 
distribution and if we assume, without loss of gener
ality, that u} V~ is of compact carrier (This means 
essentially that the functions u; V; are zero outside a 
given closed set. Note that the freedom we have in the 
division of the u; always allows us to take uj of 
compact carriers.), then by the theorem of Paley 
Wiener7 the Fourier transform of L/~ V~ is an entire 
analytic function of exponential type. This implies 
that the zeros of the function II a; are at least enumer
able and so b has always some points giving an 
important contribution to tp(x). 

This situation is illustrated by the last example 
where the function sinus may be zero for some of 
the p~. 

APPENDIX: SOME PROPERTIES OF ALMOST 
PERIODIC FUNCTIONS (APF) 

Let G be a commutative locally compact group and 
(] the set of all characters of G. If we define the 
product of two characters, X and X', by XX'(s) = 
x (s)x' (s), (] becomes a group which, provided with 
the topology of compact convergence, is called the 
dual group of G. Let now Gd be the dual of G provided 
with the discrete topology, and G' be the dual of G d • 

One can then show (3) that G' is compact. Moreover 
G can be canonically injected into G'. G' is called the 
compact group associated with G. 

Proposition 1: Let f be a continuous bounded 
function on G'. The following conditions are equiv
alent. 

(l) f is the restriction to G of a continuous function 
on G'. 

(2) f is a uniform limit of linear combination of 
characters. 

(3) The set of all the translated functions Is off is 
relatively compact in C"'(G) (for the topology of the 
uniform convergence). For proof see Ref. 2, p. 91. 

Definition: A continuous bounded function which 
verifies the conditions given in the proposition (I) is 
called almost periodic. (This definition can be gener
alized to general locally compact groups. See Ref. 3, 
p. 298.) 

We now want to take for G the group of the transla
tions of R3. For this group we have the following 
proposition. 

Proposition 2: A continuous bounded function f on 
R3 will be almost periodic if and only if for every E > 0 
there exists T > 0 (T E:: R) such that every ball of 
diameter T contains the extremity of a vector 't 

satisfying 

Ilf - /ril'lC ~ E. 

Proof: We repeat here (with the trivial necessary 
changes) the proof given in the case of R in Ref. 2, 
p. 95. Since f is periodic, the set of Is is relatively 
compact then precompact--that is to say, that for 
every E > 0 there exists a1 ••• a" E:: R3, such that for 
all S E:: R3 one can find an i = I ... n for which 

ilfs - faill ~ E. 

But this is equivalent to IlfHi - fll < E. Ifwe now 
put T = 2 sup lail, then for any point s the ball of 
diameter T contains vectors which satisfy the con
dition. 

Conversely if the conditions are satisfied, 

sup If(x + y) - f(x)1 ~ sup If(x + y) - f(a)1 
+ sup If(x) - fea)1 ~ 2E. 

SO f is uniformly convergent. 
Now for all t E R3 there exists S E the ball A of 

diameter T centered on the origin such that 

Ilf - I.-sil ~ E or Ilfs - 1.11 S E. 

But the set Is, S EO A, is compact (for a continuous 
mapping of a metric space into a metric space, a 
compact set goes onto a -compact set), so there exists 
b1 ••• bp E:: A such that for all S EO A we can find an 
i = 1 ... P such that Ilfs- fd < E; then 

ilft - fb, II S 11ft - Is II + Ilfs - fbi II S 2E 

and the set of the translation is relatively compact. 

Fourier Transform of an APF 

We define the Fourier transform of an APF ,f, as the 
Fourier transform of the function f' defined as the 
restriction of f to the compact group G' associated 
with G. Since G' is compact (Ref. 2, p. 90), the Fourier 
transform off tends to zero at infinity. This implies 
that this function is different from zero only on an 
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enumerable set. This set noted A is called the set of 
frequencies off 

In the case of G = R3, the characters are the usual 
exponentials of modulus I. We see that by the defini
tion off,fis expressed as a series of such exponentials, 

f(x) = 2 A).ei>.x. 
). 

In the general case we get 

f(g) = 2 Ai.x\g), Xi. E G. 
U/I. 

Connection of APF on R3 with Periodic Functions 
of Several Variables 

Definition 1: A set OCj, i = 1,2, ... , of real numbers 
will be called independent iffor any n the only rational 
values of r1r2 ••• r" satisfying the equation 

Definition: A finite or enumerably infinite set OCj 

of linearly independent.numbers is called a basis of the 
function f(x) if every )J (component of A) can be 
represented as a finite linear form of oc's with rational 
coefficients: 

n depends on j and A. 
Evidently every APF has a basis, and there may be 

many different bases of the same function, but for a 
fixed basis the representation is unique. 

We will assume from now on that the set Ct.j of 
"fundamental" frequencies is always finite or that the 
basis we use is finite. In fact this restriction can be 
dropped by using some limiting processes [see Ref. I, 
p.35]. 

With the use of the preceding definition the Fourier 
expansion of any APF take the form 

(+) f(x) = ~ All aei(l:;kT/ajx'"J 
~ n "'rn "'rn 

r/ 
= " A e i ~Iaj(rjx) 

£. 't'''rn • 
r 

Taking into account Definition 1 of Sec. II, we 
have the following. 

Proposition: For any APF f, there exists a function 
F at several variables, F periodic in each variable, 
such that 

f= diag F. 

Proof: Let f be given by ( + ) and define F by 

This function is well defined since Lr /Ar, ... rY < 00 

and diag F = f 

The Pre-Hilbert Space of APF 

We can show (see Ref. 2, p. 94) that almost periodic 
functions generate a pre-Hilbert space-that is, a set 
of functions the closure of which is a Hilbert space. 

In the case of R3, the scalar product is given in this 
space by 

(II g) = lim 1. ff.Jf(x)g(X)d~. 
" .... .,.. V 

v 

On the other hand the Fourier transform 1 of f is 
given by 

CONCLUSION 

Our model of disordered systems described by an 
APF potential allows us to obtain some general 
features on the behavior of such systems. It is easy to 
see that the same techniques can be used to include an 
electromagnetic field. In this case it seems that we 
would be able to describe the transport properties of 
electrons moving in potentials represented by APF's. 

Finally it is possible to use the 3n-dimensional 
description we have introduced to describe the x-ray 
scattering for the systems under consideration. 
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A simple hypothesis on the effect of the interaction between a system and its surroundings is used to 
generalize nonequilibrium statistical mechanics to apply to open systems. Thermal driving of a system 
by its surroundings is defined in statistical mechanics by analogy with the first law of thermodynamics, 
which describes exchange of heat between the system and an external source. The assumption that an iso
lated system is thermally driven is used to derive a Liouville equation with an additional term that is 
linear in the external source strength. The generalized Liouville equation is used to derive closed equations 
of motion that are the same as for an isolated system except for an additional term, which is just the 
source strength. This formalism is attractive because the source strength, which is assumed known, 
appears in the equations linearly just as in classical thermodynamics or hydrodynamics. A microscopic 
expression for the source strength is obtained by comparing the thermal driving formalism with an exact 
dynamical analysis of the system interacting with its surroundings. 

1. INTRODUCTION 
This paper presents a simple hypothesis on the 

effect of the interaction between a system and· its 
surroundings. This hypothesis is used to derive a 
generalization of the Liouville equation for open 
systems, which is then used to derive closed equations 
of motion for the physical variables of the system. 
The equations of motion are also derived exactly by 
considering the system and its surroundings together 
as an isolated system, and the results are compared. 

In thermodynamics, changes in the macroscopic 
state of a system are of two kinds. A system can be 
dynamically driven by doing work on it, or thermally 
driven by letting heat enter or leave it. Dynamical 
driving has an obvious microscopic definition and 
hence fits naturally into statistical mechanics. Ther
mal driving, on the other hand, has no obvious 
microscopic definition and hence must be formulated 
as an additional hypothesis in statistical mechanics. 

The thermal driving hypothesis that we make is 
simply that the physically observable macroscopic 
effects of the interaction between the system and its 
surroundings are sufficient, along with the Hamilto
nian of the system, to determine the time development 
of the density operator of the system. Specifically, 
thermal driving is described in our formalism by just 
the macroscopic external source strength, the macro
scopic state of the system of interest, and the operators 
whose expectations express this state. All the details 
of the interaction with the surroundings are con
tained in the source strength, which is a macroscopic 
parameter that is directly observed. This definition of 
thermal driving is formulated by analogy with the 
first law of thermodynamics, with the dQ term 
becoming the source strength. In this manner, the 
parallelism between dynamical and thermal driving 

in thermodynamics is incorporated into nonequilib
rium statistical mechanics. 

The concept of thermal driving is useful when the 
macroscopic state of the system does not depend upon 
the details of the interaction Hamiltonian, but does 
depend upon the external source strength. This is a 
common situation. For example, the state of the 
water in a tea kettle on a stove depends upon how 
fast heat is added and how fast the water evaporates, 
but not upon the kind of stove used or where the 
steam goes after it leaves the surface of the water. 

The assumption that an isolated system is thermally 
driven leads immediately to a generalization of the 
Liouville equation for open systems. This equation 
differs from the Liouville equation for isolated 
systems only by an additional term that is linear in the 
external source strength and otherwise depends only 
upon the macroscopic state of the system of interest 
and upon the operators whose expectations express 
this state. The generalized Liouville equation is used 
to derive closed equations of motion for the expecta
tions of these operators. These equations of motion 
are exactly the same as those for an isolated system 
except for an additional term, which is just the 
external source strength. 

The equations of motion derived previously1.2 for an 
isolated system are exact partial integro-differential 
equations whose kernels are time-correlation func
tions. The expectations of the operators corresponding 
to the quantum-mechanical variables describing the 
macroscopic state of the system are related by another 
set of equations to the thermodynamic conjugate 
variables such as temperature, chemical potential, etc. 
These equations and the equations of motion, taken 
together, are closed in the sense that the expectations 
and their thermodynamic conjugates are the only 

563 
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unknowns, although some of the dependence in the 
equations on the conjugates is expressed only im
plicitly. The equations of motion are exact memory
retaining non local generalizations of the eq uations of 
nonequilibrium thermodynamics. Hence the equa
tions can describe thermal relaxation and transport 
in an isolated system. In the Markovian local limit 
the equations reduce to the equations of nonequilib
rium thermodynamics, where the transport coefficients 
are time and space integrals of the kernels. 

An introductory discussion of this formalism has 
been given in the first section of Ref. 2. The formalism 
has been applied to the derivation of the equations of 
motion of nuclear magnetism3 and to the derivation 
of generalized hydrodynamic equations from quantum 
statistical mechanics. 4 This last paper is self-contained 
and hence also serves as an introduction. 

In the present paper on open systems, the main 
text, but not all the footnotes, can be read without a 
previous reading of these references. 

The remainder of this paper in outline is as follows. 
In the rest of this section several other papers on open 
systems are discussed. In Sec. 2 the definition of ther
mal driving is given" and is used to derive the general
ization of the Liouville equation for open systems. 
This equation is used to find the corresponding 
generalization of the equations of motion. In Sec. 3 
transport into a system is analyzed purely dynamically 
by deriving the exact equations of motion for a 
composite system consisting of the system of interest 
and its surroundings. This formalism is compared 
with the thermal driving formalism of Sec. 2, and a 
microscopic expression for the source strength is 
obtained. This expression is used to discuss limitations 
in the usefulness of the thermal driving formalism 
for open systems. 

Open systems have also been discussed by other 
authors, whose work we now relate to ours. 

In order to obtain expressions for the transport 
coefficients, McLennan 6 considers a nonequilibrium 
process that results from the nonconservative forces 
exerted on the system of interest by a number of 
external reservoirs. He obtains two different expres
sions involving the effects of the reservoirs, and then 
eliminates between them the reservoir parts. He thus 
obtains an expression for a nonequilibrium statistical 
density that depends only upon the conjugate vari
ables of the system alone, with no reference to the 
reservoirs. The reservoirs were not even needed in the 
derivation since, as Zubarev7 pointed out, this non
equilibrium statistical density is easily shown to satisfy 
the Liouville equation for the isolated system alone. 
Thus, McLennan was interested in using the effect 

of the reservoirs on the system only to obtain a 
description of a nonequilibrium process within the 
system. 

In order to obtain a description of nonequilibrium 
processes, Bergmann and Lebowitz8 add a term to 
the Liouville equation to represent the effect of the 
surroundings. The additional term in the Liouville 
equation that we derive cannot be expressed in the 
simple form that they assume. 

Bergmann and Lebowitz8 also suggest that a 
system can approach equilibrium only by interacting 
with its surroundings. Indeed, it is true that once an 
isolated system is disturbed dynamically from equi
librium, its statistical density can never approach a 
canonical distribution. However, macroscopic systems 
can be described by a relatively small number of 
variables, and an isolated system can approach a 
state in which these variables take values computed 
using a canonical distribution. This approach to 
equilibrium in an isolated system is described by the 
formalism of Refs. I and 2, and the present paper is 
merely an extension of that formalism to the more 
general case of nonconservative interaction with the 
surroundings. 

Emch and Sewellu consider a system interacting 
dynamically with a number of infinite reservoirs each 
in internal equilibrium and obtain an equation of 
motion for the statistical density operator of the 
system alone. The effect of the surroundings in their 
generalized Liouville equation is given by a memory 
integral term, whose kernel is a system operator that 
depends on the reservoir temperatures and on the 
interaction Hamiltonian. In the present paper the 
hypothesis of thermal driving is used to express 
the physically relevant part of this interaction in terms 
of a macroscopic external source strength, which does 
not appear in a memory integral. 

None of these authors used their generalized 
Liouville eq uations to obtain closed equations of 
motion for the system's physical variables of interest. 
Furthermore, in their work, the external source 
strength does not appear explicitly, and hence the 
correspondence with thermodynamics is not apparent. 

2. STATISTICAL MECHANICS OF THERMALLY 
DRIVEN SYSTEMS 

Let FI(r) , F2(r), ... , Fm(r) denote the linearly inde
pendent quantum mechanical (i.e., Hermitian, linear, 
and possibly noncommuting) operators whose expecta
tions correspond to the macroscopic variables that are 
observed or controlled in the experiment considered. 
For example, these operators may be the energy 
density and particle density, which can depend upon 
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position r. In addition to these variables there are 
their thermodynamic conjugates; all together they 
are assumed to form a thermodynamically complete 
set of variables. However, for the present we need to 
consider only the operators and their expectations. In 
order to simplify notation, we will suppress the 
subscript and the r and write just F to represent these 
operators in this paper. 

When an isolated system is dynamically driven by 
its surroundings, its Hamiltonian Je(t) has a time 
dependence due to the time dependence of the 
external force fields acting on the system. This 
Hamiltonian appears in the Liouville equation for the 
statistical density o'perator pet). The expectation of F, 
then, is calculated in principle by solving this equation 
for pet), multiplying pet) by F, and taking the trace. 
As a result this expectation will have a time depend
ence, which we say is due to the dynamics. 

When the system is thermally driven, however, its 
variables that are observed or controlled are changed 
not only dynamically, but also thermally by addition 
to these variables from the surroundings, while all of 
its variables other than those observed or controlled 
are changed only dynamically and not changed 
directly by the surroundings. Let G represent all 
possible operators of the system other than those 
corresponding to variables that are observed or 
controlled. Also let J(t) be the rate of change that is 
directly due to additions from the surroundings. like 
F, the source strengthJ(t) also has a subscript and a 
dependence on r that has been suppressed. With this 
notation the definition of thermal driving5 is 

(] Tr ~?(t)] _ Tr [Fp(t)] = JCt), (I) 

(] Tr ~~p(t)l _ Tr [ep(l)] = O. (2) 

These equations state that the total rate of change of 
the expectations of F and G minus the rate of change 
due to the dynamics equals the rate of change due 
to additions from the surroundings. The first equation 
has the same form as the first law of thermodynamics, 
dE + dW = dQ. Because the second equation has a 
zero on the right, it is necessary for F to include all 
the operators corresponding to the system variables 
that have additions from the surroundings. All the 
variables corresponding to the operators represented 
by G are assumed not to have additions from the 
surroundings. 

The new feature in these equations is the presence 
of the jet) terms, which implies a new equation of 
motion for pet). This generalizes nonequilibrium 

statistical mechanics to correspond more closely with 
thermodynamics, which can describe, for example, 
heat or particles added to a system as well as work 
done on a system by its surroundings. 

In order to use these equations, it is necessary to 
give the operators represented by G a more precise 
definition. Since G corresponds to all those variables 
that are not observed or controlled, it must be 
orthogonal to F, which corresponds to those that are. 
This orthogonality can be expressed by 

G = [I - :~(t)]A, (3) 

where A is an arbitrary quantum mechanical operator 
of the system and :?J(t) is an operator that gives the 
projection of A along F. This projection operator is 
defined byl° 

:?J(t)A == (AF)[' (F F)i1 
• F. (4) 

The angular brackets are defined by 

(A)t == Tr [Aa(t)], (5) 

where a(t) is a statistical density operator that 
depends upon pet). We do not need to know that 
dependence right now; all we need to know now is 
that aCt) is some given function of p(t). Also the barll 
over Fin Eq. (4) can be ignored for now. 

The dot over the operators F and G in Eqs. (I) and 
(2) is defined by 

. (]A i 
A == -a + - [JC(t), AJ, 

t n (6) 

where A is either F or G. These are Schrodinger 
operators, and so the first term on the right of Eq. 
(6) will be zero for F, but not for G because of the 
time dependence given by Eqs. (3)-(5). 

In general, F represents several spatially dependent 
operators and so has a subscript and a dependence on 
r, which we have suppressed. Hence (FF)[ is a matrix 
kernel, which depends upon two space coordinates, 
and the (FF)i1 in Eq. (4) is its inverse.12 The dot in 
Eq. (4) has the following special meaning. Say 
we have some (possibly time-dependent) functions 
A1 (r, t), ... , A lit (r , t), which we represent by just A(t). 
Then a dot between A(t) and F represents the sum 
and integral: 

ACt) . F == ,t I(h'AI.(r, t)FII(r). 

In Eq. (4) there are two such sums and integrals 
over the subscripts and space dependences of the 
operators F. 

Equations (\)-(6) give our definition of thermal 
driving, where the A in Eq. (3) is to range over all 
possible system operators. 
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These equations are sufficient to determine the 
equations of motion for pet). By inserting Eq. (6) into 
Eq. (2), cancelling a term, inserting Eqs. (3) and (4) 
into the result, and using Eqs. (I), (6), and (5), we get 

Tr (A~~ + Tr (A ~ [Je(t), pet)]) 

= Tr [AFa(t)] . (F F)"l1 
• jet). 

Since this must be true for arbitrary A, we get13 

op(t) + .!. [.Je(t), pet)] = Fa(t) . (F F>-;1 . jet). 
ot n (7) 

This is the equation of motion for pet); it is closed 
since a(t) is a given function of pet) and since jet) is as
sumed given. This generalization of the Liouville 
equation is attractive because it is Markovian and 
because the source strengthj(t) appears in it explicitly. 

Equation (7) can be used to obtain equations of 
motion for the expectations of F in a way similar to 
that used in Ref. 1. There the equations of motion 
were derived using a statistical density operator that 
is canonical in the operators F, with coefficients A(t) 
chosen to give the correct expectation for F. For 
thermally driven systems, the equations of motion 
will be closed only if we choose the aCt) in the above 
definition of thermal driving to be just this generalized 
canonical density operator. This choice now completes 
our definition of thermal driving.14 This definition 
and the resulting generalized Liouville equation thus 
depend not only on which thermodynamic coordi~ates 
of the system are directly changed by the surroundIn~s, 
but also on what additional operators must be In
cluded in F in order to obtain a complete thermo
dynamic description of the isolated sy.ste~. Onc~ F 
is chosen, the effect of the nonconservatlve InteractIOn 
with the surroundings is given in our formalism in 
terms of just the external source strength jet), the 
system's conjugate variables A(t), and the operators F. 
The details of the interaction are irrelevant. 

With this definition of aCt), the generalized Liouville 
equation (7) can now be used as beforel5 to ~erive the 
equation of motion for (F)t, and the result IS 

aw), = (F)t + /(t) + r"t'K(t, t')' A(t'). at Jo 
(8) 

Here (F)t is the reversible change i? (F)t, the ~ernel 
K(t, t') is the autocorrelation of F, and A(t) IS the 
thermodynamic conjugate to (F)t. All of these are 
exactly the same functionals of (F) as before16 so that 
the equation of motion is still closed. The only 
difference is that the external source strength let), 
which is presumed known, is simply added to the 

equation. This is exactly the wayan external source 
strength appears in the classical hydrodynamic 
equations. 

This simple result occurs only because the aCt) 
used in the definition of thermal driving is the same 
as the generalized canonical density used in deriving 
the equation of motion. Otherwise the equation 
would not be closed. 

Thus our definition (1)-(6) of thermal driving is 
attractive not only because it itself is the statistical 
mechanical analog of thermal driving in thermo
dynamics, but also because it easily gives a simple 
generalization of the Liouville equation (7), which 
leads directly to the closed equation of motion (8). 
In all these equations the source strength jet) appears 
explicitly and not in a memory integral, and in Eq. 
(8) it appears exactly as in the classical hydrodynamic 
equations. 

3. COMPARISON WITH EXACT EQUATIONS 
FOR SYSTEM AND SURROUNDINGS 

In the preceding section, we assumed that let) 
represented a set of given functions of space and time 
that are known from macroscopic observations. In 
this section, we obtain an expression for jet) from 
the exact equations of motion for the physical variables 
of the system and its surroundings. 

Consider an isolated system consisting of the system 
of interest interacting purely dynamically with its 
surroundings. The total Hamiltonian is 

Je(t) = Je.(t) + JeT(t) + Xi' (9) 

and the operators F consist of two parts: F. for the 
system of interest, and FT for its surroundings. All 
system operators commute with all surroundings 
operators; however, no operators commute with the 
interaction Jei between the system and its surround
ings. The generalized canonical density operator, 
which is defined l by Eq. (1-6), then becomes 

a = a.aT = exp (-As' F. - Ar ' FT)/Z.Zr, (10) 

where the conjugate functions A are chosen so that 
Eq. (5) gives the correct expectations for the operators 
F. This can be used to express the initial condition 
(\)-(15) for the statistical density operator ~f .we 
assume that JC; is zero for t < 0 and that the statIstIcal 
density operators of the system and of its surroundings 
are both initially generalized canonical density opera
tors. The equations of motion (2-3) can now be 
separated into two exact coupled equations 

o(F.)t = (Fs)t + 1:(t) + rdt'K •. s(t, t' )' A.(t'), (11) at Jo 
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and 

o(Fr)t . 1.( ) ltd' ( ') 1 (') (12) -- = (Fr>t + r t + t K r •r t, t . AT t , at 0 

where /.(t) and fret) are defined by 

/'(t) == fdt'Ks,it, t')' A.(t') (13) 

and 

/,.(t) == fdt'Kr .• (t, t')' A.(t'). (14) 

Here the subscripts on the kernels K refer to the 
subscripts on the operators F contained in them, as 
given in Eq. (2-4). 

In the following we will show how Eq. (II) can be 
identified with Eq. (8), which was obtained under the 
assumption of thermal driving. Equation (13) then 
gives an expression for the thermal driving source in 
terms of the Hamiltonian (9) and the thermodynamic 
conjugate coordinate AT of the surroundings. 

The terms in Eq. (11) will be identified one at a 
time. Notice that Eqs. (11) and (12) are coupled in all 
three terms on the right and not just by the / terms. 

In the (Es>t term in Eq. (11) the coupling occurs 
only in the ([Jei , F.])! part since only this part 
depends upon Ar as well as on A •. The remaining part 
does not couple the equations because ([Je., Fs])t 
depends only upon As, and the rest is zero. The 
coupling in < pC" Fs])t may be expressed as an 
average force exerted by the surroundings on the 
system. If, instead of considering the purely dynamical 
analysis of the system interacting with its surround
ings, we consider the system as an isolated thermally 
and dynamically driven system, then this average 
force could be included as an external potential in 
the Hamiltonian of the system. The effective Hamil
tonian for the system then is 

(15) 

which depends upon AT as it should. If this Hamil
tonian is used in Eq. (8), then (F')I in that equation is 
exactly equal to the (E')I in Eq. (11). Hence (F.)t in 
Eq. (ll) can be identified with (E)I in Eq. (8), and the 
coupling in this term will occur only dynamically 
through the dependence of the average interaction 
on Ar • 

In the integral term in Eq. (II) the coupling occurs 
in the kernel K •. s since it depends upon AT as well as on 
As' However, to a good approximation, the Je used to 
compute this kernel can be replaced by Jee • Then 
Ks .• will depend upon Ar only through its dependence 
on Jee and no longer through the (j used in the defini
tion of K given in Eqs. (2-4)-(2-6), (2-9), and (2-10). 

Hence in this approximation K •. s in Eq. (11) can be 
identified with Kin Eq. (8), and the coupling in this 
term will occur only dynamically through the depend
ence of the effective interaction on AT' 

This completes the identification of Eq. (II) with 
Eq. (8). Therefore, the source strength/(t) is given by 
Eq. (13). This is a microscopic expression since the 
kernel K •. r is defined microscopically by Eq. (2-4). 
It shows that / depends upon AT and also upon As 
since K •.• depends upon both A. and AT' As a result, / 
in Eq. (8) depends upon the thermodynamic state of 
both the system and its surroundings. Furthermore, 
even if both As and A. are nearly constant in space, 
/ will have a spatial dependence determined by the 
kernel Ks•r in Eq. (13). This leads to a limitation on 
the kind of problem to which the thermal driving 
formalism can be applied. 

The idea behind the thermal driving formalism is 
that the source strength / is known experimentally 
and need not be calculated microscopically as in this 
section. Hence a limitation to the usefulness of the 
thermal driving formalism arises because experimental 
knowledge of the space and time dependence of / 
is limited in practice. Fine details are not observed 
except with great effort, and, if these details are 
important, the formalism is not useful. 

For example, consider the calculation of the 
Kapitza resistance to heat flow across a surface 
between two dissimilar materials. We might try to 
compute the spatial dependence of the temperature 
near the surface by considering one material as the 
system, with heat entering from outside. Now al
though the total energy flux into the system is easily 
measured, we do not know its precise spatial depend
ence. If we assume that the entire source is concen
trated on the surface, then we find an infinite jump 
in the temperature at the surface. This can be seen 
with a simple steady-state calculation assuming an 
exponential spatial dependence for the kernel. In 
order to avoid the infinite temperature jump, we must 
distribute the source near the surface in a region whose 
thickness is of the order of the correlation length in 
the energy-current autocorrelation function (2.;...27). 
But we cannot use an arbitrary distribution since the 
spatial dependence of the temperature near the 
surface depends on it. The distribution can be deter
mined only by considering both materials together as 
an isolated system and using the exact formalism 
of this section or of Refs. 1 and 2. But then the equa
tions of motion can be solved directly for the spatial 
dependence of the temperature near the surface of 
interest, and there is no need to consider how the 
heat goes from one material to the other. 
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This example brings out a general limitation to the 
usefulness of the thermal driving formalism. This 
formalism is not useful for determining the detailed 
response of a system within approximately a correla
tion length from where the system is thermally driven. 
However, in practice, this limitation is often not 
relevant since the detailed response within a correla
tion length is not of interest. This is shown empirically 
by the wide applicability and success of the equations 
of nonequilibrium thermodynamics, which we have 
derived from our definition of thermal driving in 
statistical mechanics. 
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